Skip to main content

Immune Responses in Glioblastoma: an Avenue to Effective Cancer Therapy or a Mere Epiphenomenon?

  • Chapter
Protective and Pathological Immune Responses in the CNS

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 265))

  • 173 Accesses

Abstract

Glioblastoma multiforme is the most aggressive and unfortunately the most common brain tumor. Malignant gliomas account for one third of all brain tumors. The future of patients diagnosed with glioblastoma is grim: most of them die within a year and even the most intricate attempts at therapy generally fail (Hill et al. 1999; Holland 2000; Kleihues and Cavenee 2000). Glioblastomas are genetically and morphologically extremely heterogenous, with regions of necrosis and hemorrhage, palisading tumor cells, and infiltration zones surrounded by locally activated microglial cells, a resident monocytic cell population of the brain. Typical for glioblastomas are microvascular infiltrations, a sign of massive neovascularization (Fig. 1) that is so consistent that it is used in tumor classification. Infiltration by immune cells is regionally heterogenous, but occasionally massive leukocytic infiltrations are observed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Babic AM, Chen CC, Lau LF (1999) Fispl2/mouse connective tissue growth factor mediates endothelial cell adhesion and migration through integrin αvß3, promotes endothelial cell adhesion and induces angiogenesis in vivo. Mol Cell Biol 19:2958–2966

    PubMed  CAS  Google Scholar 

  • Beutler AS, Banck MS, Wedekind D, Hedrich HJ (1999) Tumor gene therapy made easy: allogeneic major histocompatibility complex in the C6 rat glioma model. Hum Gene Ther 10:95–101

    Article  PubMed  CAS  Google Scholar 

  • Bodey B, Bodey B, Siegel SE, Kaiser HE (1999) Fas (Apo-1, CD95) receptor expression in childhood astrocytomas. Is it a marker of the major apoptotic pathway or a signaling receptor for immune escape of neoplastic cells? In Vivo 13:357–373

    Google Scholar 

  • Bodmer S, Strommer K, Frei K, Siepl C, de Tribolet N, Heid I, Fontana A (1989) Immunosuppression and transforming growth factor-ß in glioblastoma. J Immunol 143:3222–3229

    PubMed  CAS  Google Scholar 

  • Boehm T, Folkman J, Browder T, O’Reilly MS (1997) Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 390:404–406

    Article  PubMed  CAS  Google Scholar 

  • Chappell DB, Restifo NP (1998) T cell-tumor cell: a fatal interaction? Cancer Immunol Immunother 47:65–71

    Article  PubMed  CAS  Google Scholar 

  • Debinski W, Gibo DM, Hulet SW, Connor JR, Gillespie GY (1999) Receptor for interleukin 13 is a marker and therapeutic target for human high-grade gliomas. Clin Cancer Res 5:985–990

    PubMed  CAS  Google Scholar 

  • Desbaillets I, Diserens AC, Tribolet N, Hamou MF, van Meir EG (1997) Upregulation of interleukin 8 by oxygen-deprived cells in glioblastoma suggests a role in leukocyte activation, Chemotaxis, and angiogenesis. J Exp Med 186:1201–1212

    Article  PubMed  CAS  Google Scholar 

  • DiMeco F, Rhines LD, Hanes J, Tyler BM, Brat D, Torchiana E, Guarnieri M, Colombo MP, Pardoll DM, Finocchiaro G, Brem H, Olivi A (2000) Paracrine delivery of IL-12 against intracranial 9L gliosarcoma in rats. J Neurosurg 92:419–427

    Article  PubMed  CAS  Google Scholar 

  • Dix AR, Brooks WH, Roszman TL, Morford LA (1999) Immune defects observed in patients with primary malignant brain tumors. J Neuroimmunol 100:216–232

    Article  PubMed  CAS  Google Scholar 

  • Fathallah-Shaykh HM, Zhao LJ, Kafrouni AI, Smith GM, Forman J (2000) Gene transfer of IFN-gamma into established brain tumors represses growth by antiangiogenesis. J Immunol 164:217–222

    PubMed  CAS  Google Scholar 

  • Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other diseases. Nat Med 1:27–31

    Article  PubMed  CAS  Google Scholar 

  • Folkman J (1997) Addressing tumor blood vessels. Nat Biotechnol 15:510

    Article  PubMed  CAS  Google Scholar 

  • Folkman J (1998) Anti-angiogenic gene therapy. Proc Natl Acad Sci USA 95:9064–9066

    Article  PubMed  CAS  Google Scholar 

  • Giezeman-Smits KM, Okada H, Brisette-Storkus CS, Villa LA, Attanucci J, Lotze MT, Pollack IF, Bozik ME, Chambers WH (2000) Cytokine gene therapy of gliomas: induction of reactive CD4+ T cells by interleukin-4-transfected 9L gliosarcoma is essential for protective immunity. Cancer Res 60:2449–2457

    PubMed  CAS  Google Scholar 

  • Gorski DH, Mauceri HJ, Salloum RM, Gately S, Hellman S, Beckett MA, Sukhatme VP, Soff GA, Hufe DW, Weichselbaum RR (1998) Potentiation of the antitumor effect of ionizing radiation by brief concomitant exposure to angiostatin. Cancer Res 58:5686–5689

    PubMed  CAS  Google Scholar 

  • Graf MR, Jadus MR, Hiserodt JC, Wepsic HAT, Granger GA (1999) Development of systemic immunity to glioblastoma multiforme using tumor cells genetically engineered to express the membrane-associated isoform of macrophage colony-stimulating factor. J Immunol 163:5544–5551

    PubMed  CAS  Google Scholar 

  • Griscelli F, Li H, Bennaceur-Griscelli A, Soria J, Opolon P, Soria C, Perricaudet M, Lu H (1998) Angiostatin gene transfer: inhibition of tumor growth in vivo by blockage of endothelial cell proliferation associated with a mitosis arrest. Proc Natl Acad Sci USA 95:6367–6372

    Article  PubMed  CAS  Google Scholar 

  • Hamel W, Westphal M (2000) Growth factors in gliomas revisited. Acta Neurochir 142:113–137

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353–364

    Article  PubMed  CAS  Google Scholar 

  • Harmey JH, Dimitriadis E, Kay E, Redmond HP, Bouchier-Hayes D (1998) Regulation of macrophage production of vascular endothelial growth factor (VEGF) by hypoxia and transforming growth factor beta-1. Ann Surg Oncol 5:271–278

    Article  PubMed  CAS  Google Scholar 

  • Hill JR, Kuriyama N, Kuriyama H, Israel MA (1999) Molecular genetics of brain tumors. Arch Neurol 56:439–441

    Article  PubMed  CAS  Google Scholar 

  • Holland EC (2000) Glioblastoma multiforme: the terminator. Proc Natl Acad Sci USA 97:6242–6244

    Article  PubMed  CAS  Google Scholar 

  • Holmgren L, O’Reilly MS, Folkman J (1995) Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat Med 1:149–153

    Article  PubMed  CAS  Google Scholar 

  • Huettner C, Paulus W, Roggendorf W (1995) Messenger RNA expression of the immunosuppressive cytokine IL-10 in human gliomas. Am J Pathol 146:317–322

    PubMed  CAS  Google Scholar 

  • Jennings MT, Hart CE, Commers PA, Whitlock JA, Martincic D, Maciunas RJ, Moots PL, Shebab TM (1997) Transforming growth factor beta as a potential tumor progression factor among hyperdipoid glioblastoma cultures: evidence for the role of platelet-derived growth factor. J Neurooncol 31:233–254

    Article  PubMed  CAS  Google Scholar 

  • Jensen RL (1998) Growth factor-mediated angiogenesis in the malignant progression of glial tumors: a review. Surg Neurol 49:185–195

    Article  Google Scholar 

  • Kao J, Houck K, Fan Y, Haehnel I, Libutti SK, Kayton ML, Grikscheit T, Chabot J, Nowygrod R, Greenberg S, Kuang WJ, Leung DW, Hayward JR, Kisel W, Heath WM, Brett J, Stern DM (1994a) Characterization of a novel tumor-derived cytokine. Endothelial-monocyte activating polypeptide II. J Biol Chem 269:25106–25119.

    PubMed  CAS  Google Scholar 

  • Kao J, Fan YG, Haehnel I, Brett J, Greenberg S, Clauss M, Kayton M, Houck K, Kiesel W, Seljelid R, Burnier J, Stern DM (1994b) A peptide derived from the amino terminus of endothelial-monocyte- activating polypeptide II modulates mononuclear and polymorphonuclear leukocyte functions, defines an apparently novel cellular interaction site, and induces an acute inflammatory response. J Biol Chem 269:9774–9782

    PubMed  CAS  Google Scholar 

  • Ke LD, Fueyo J, Chen X, Steck PA, Ahi YX, Im SA, Yung WK (1998) A novel approach to glioma gene therapy: down-regulation of the vascular endothelial growth factor in glioma cells using ribozymes. Int J Oncol 12:1391–1396

    PubMed  CAS  Google Scholar 

  • Kiefer R, Supler ML, Toyka KV, Streit WJ (1994) In situ detection of transforming growth factor-β mRNA in experimental rat glioma and reactive glial cells. Neurosci Lett 166:161–164

    Article  PubMed  CAS  Google Scholar 

  • Kireeva ML, MO FE, Yang GP, Lau LF (1996) Cyr61, a product of a growth factor-inducible immediate-early gene, promotes cell proliferation, migration and adhesion. Mol Cell Biol 16:1326–1334

    PubMed  CAS  Google Scholar 

  • Kirsch M, Strasser J, Allende R, Bello L, Zhang J, Black PM (1998) Angiostatin suppresses malignant glioma growth in vivo. Cancer Res 58:4654–4659

    PubMed  CAS  Google Scholar 

  • Kleihues P, Cavenee WK eds (2000) Pathology and genetics of tumours of the nervous system. IARC-Press Lyon

    Google Scholar 

  • Koochekpour S, Merzak A, Pilkington GJ (1996) Vascular endothelial growth factor production is stimulated by ganglioside and TGF-beta isoforms in human glioma cells in vitro. Cancer Lett 102:209–215

    Article  PubMed  CAS  Google Scholar 

  • Kuppner M, Hamou M, Sawamura Y, Bodmer S, de Tribolet N (1989) Inhibition of lymphocyte function by glioblastoma-derived transforming growth factor beta 2. J Neurosurg 71:211–217

    Article  PubMed  CAS  Google Scholar 

  • Lau LF, Lam CT (1999) The CCN family of angiogenic regulators: the integrin connection. Exp Cell Res 248:44–57

    Article  PubMed  CAS  Google Scholar 

  • Leon SP, Folkerth RD, Black PM (1996) Microvessel density is a prognostic indicator for patients with astroglial brain tumors. Cancer 77:362–372

    Article  PubMed  CAS  Google Scholar 

  • Liau LM, Fakhrai H, Black KL (1998) Prolonged survival of rats with intracranial C6 gliomas by treatment with TGF-beta antisense gene. Neurol Res 20:742–747

    PubMed  CAS  Google Scholar 

  • Lichtor T, Libermann TA (1994) Coexpression of interleukin-1 beta and interleukin-6 in human brain tumors. Neurosurg 34:669–673

    Article  CAS  Google Scholar 

  • Lund EL, Spang-Thomsen M, Skovgaard-Poulsen H, Kristjansen PEG (1998) Tumor angiogenesis — a new therapeutic target in gliomas. Acta Neurol Scand 97:52–62

    Article  PubMed  CAS  Google Scholar 

  • Martin R, Haendler B, Hofer-Warbinek R, Gaugitsch H, Wrann M, Schluesener H, Seifert JM, Bodmer S, Fontana A, Hofer E (1987) Complementary DNA for human glioblastoma-derived T cell suppressor factor, a novel member of the transforming growth factor-ß gene family. EMBO J 6:3673–3677

    PubMed  Google Scholar 

  • Marvin MR, Libutti SK, Kayton M, Kao J, Hayward J, Grikscheit T, Fan Y, Brett J, Weinberg A, Nowygrod R, LoGerfo P, Feind C, Hansen KS, Schwartz M, Stern D, Chabot J (1996) A novel tumor-derived mediator that sensitizes cytokine-resistant tumors to tumor necrosis factor. J Surg Res 63:248–255

    Article  PubMed  CAS  Google Scholar 

  • Mosmann TR, Sad S (1996) The expanding universe of T cell subsets: Th1, Th2 and more. Immunol Today 17:138–146

    Article  PubMed  CAS  Google Scholar 

  • Morioka T, Baba T, Black KL, Streit WJ (1992) Response of microglial cells to experimental rat glioma. Glia 6:75–79

    Article  PubMed  CAS  Google Scholar 

  • Nishie A, Ono M, Shono T, Fukushi J, Otsubo M, Onoue H, Ito Y, Inamura T, Ikezaki K, Fukui M, Iwaki T, Kuwano M (1999) Macrophage infiltration and heme oxygenase-1 expression correlate with angiogenesis in human gliomas. Clin Cancer Res 5:1107–1113

    PubMed  CAS  Google Scholar 

  • Nishikawa R, Cheng S, Nagashima R, Huang HS, Cavenee WK, Matsutani M (1998) Expression of vascular endothelial growth factor in human brain tumors. Acta Neuropathol 96:453–462

    Article  PubMed  CAS  Google Scholar 

  • Nitta T, Hishii M, Sato K, Okamura K (1994) Selective expression of interleukin-10 gene within glioblastoma multiforme. Brain Res 649:122–128

    Article  PubMed  CAS  Google Scholar 

  • Olofsson A, Miyazono K, Kanzaki T, Colosetti P, Engstrom U, Heldin CH (1992) Transforming growth factor-beta 1, beta 2, and beta 3 secreted by a human glioblastoma cell line. Identification of small and different large latent complexes. J Biol Chem 267:19482–19488

    PubMed  CAS  Google Scholar 

  • Okada H, Tahara H, Shurin MR, Attanucci J, Giezeman-Smits KM, Fellows WK, Lotze MT, Chambers WH, Bozik ME (1998) Bone marrow-derived dendritic cells pulsed with a tumor-specific peptide elicit effective anti-tumor immunity against intracranial neoplasms. Int J Cancer 78:196–201

    Article  PubMed  CAS  Google Scholar 

  • O’Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, Lane WS, Cao Y, Sagy EH, Folkman J (1994) Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79:315–328

    Article  PubMed  Google Scholar 

  • O’Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR, Folkman J (1997) Endostatin: an endogenous inhibitor of angiogenesis and tumor cell growth. Cell 88:277–285

    Article  PubMed  Google Scholar 

  • Parker JN, Gillespie GY, Love CE, Randall S, Whitley RJ, Markert JM (2000) From the cover: engineered herpes simplex virus expressing IL-12 in the treatment of experimental murine brain tumors. Proc Natl Acad Sci USA 97:2208–2213

    Article  PubMed  CAS  Google Scholar 

  • Parney IF, Farr-Jones MA, Chang LJ, Petruk KC (2000) Human glioma immunobiology in vitro: implications for immunogene therapy. Neurosurgery 46:1169–1178

    Article  PubMed  CAS  Google Scholar 

  • Plate KH, Risau W (1995) Angiogenesis in malignant gliomas. Glia 15:339–347

    Article  PubMed  CAS  Google Scholar 

  • Plate KH, Breier G, Weich HA, Risau W (1992) Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 359:845–848

    Article  PubMed  CAS  Google Scholar 

  • Plate KH, Breier G, Millauer B, Ullrich A, Risau W (1993) Up-regulation of vascular endothelial growth factor and its cognate receptors in rat glioma model of tumor angiogenesis. Cancer Res 53:5822–5827

    PubMed  CAS  Google Scholar 

  • Prewett M, Huber J, Li Y, Santiago A, O’Connor W, King K, Overholser J, Hooper A, Pytowski B, Witte L, Bohlen P, Hicklin DJ (1999) Antivascular endothelial growth factor receptor (fetal liver kinase I) monoclonal antibody inhibits tumor angiogenesis and growth of several mouse and human tumors. Cancer Res 59:5209–5218

    PubMed  CAS  Google Scholar 

  • Reijneveld JC, Voest EE, Taphoorn MJB (2000) Angiogenesis in malignant primary and metastatic brain tumors. J Neurol 247:597–608

    Article  PubMed  CAS  Google Scholar 

  • Rempel SA, Dudas S, Ge S, Gutierrez JA (2000) Identification and localization of the cytokine SDF1 and its receptor, CXC chemokine receptor 4, to regions of necrosis and angiogenesis in human glioblastoma. Clin Cancer Res 6:102–111

    PubMed  CAS  Google Scholar 

  • Roggendorf W, Strupp S, Paulus W (1996) Distribution and characterization of microglia/macrophages in human brain tumors. Acta Neuropathol 92:288–293

    Article  PubMed  CAS  Google Scholar 

  • Roszman T, Elliot L, Brooks W (1991) Modulation of T cell functions by gliomas. Immunol Today 12:370–374

    Article  PubMed  CAS  Google Scholar 

  • Saleh M, Stacker SA, Wilks AF (1996) Inhibition of growth of C6 glioma cells in vivo by expression of antisense endothelial growth factor sequence. Cancer Res 56:393–401

    PubMed  CAS  Google Scholar 

  • Sampath P, Hanes J, DiMeco F, Tyler BM, Brat D, Pardoll DM, Brem H (1999) Paracrine immunotherapy with interleukin-2 and local chemotherapy is synergistic in the treatment of experimental brain tumors. Cancer Res 59:2107–2114

    PubMed  CAS  Google Scholar 

  • Sawamura Y, Diserens AC, de Tribolet N (1990) In vitro prostaglandin E2 production by glioblastoma cells and its effect on interleukin-2 activation of oncolytic lymphocytes. J Neurooncol 9:125–130

    Article  PubMed  CAS  Google Scholar 

  • Schluesener H, Meyermann R (1991) Spontaneous multidrug transport in human glioma is regulated by transforming growth factors type ß. Acta Neuropathol 81:641–648

    Article  PubMed  CAS  Google Scholar 

  • Schluesener H (1999) Tyrosyl-tRNA synthetase: a housekeeping protein and an attractive harbinger of cellular death? Angewandte Chemie Intern Ed 38:3653–3637

    Google Scholar 

  • Schwarz M, Brett J, Li J, Hayward J, Schwarz R, Kao J, Chappey O, Wautier JL, Chabot J, Lo Gerfo P, Stern D (1995) Endothelial-monocyte activating polypeptide (EMAP) II, a novel antiangiogenic protein, suppresses tumor growth and induces apoptosis in endothelial cells. Circulation 92(Suppl):l-7

    Google Scholar 

  • Senger DR, Galli SJ, Dvorak AM, Perruzi CA, Harvey VS, Dvorak HF (1983) Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219:983–985

    Article  PubMed  CAS  Google Scholar 

  • Singh RK, Fidler IJ (1996) Regulation of tumor angiogenesis by organ-specific cytokines. Curr Top Microbiol Immunol 213:1–11

    Article  PubMed  CAS  Google Scholar 

  • Stratmann A, Machein MR, Plate KH (1997) Anti-angiogenic gene therapy of malignant glioma. Acta Neurochir Suppl Wien 68:105–110

    CAS  Google Scholar 

  • Stratmann A, Risau W, Plate KH (1998) Cell-type specific expression of angiopoietin-1 and angiopoietin-2 suggests a role in glioblastoma angiogenesis. Am J Pathol 153:1333–1339

    Article  Google Scholar 

  • Tada M, Diserens AC, Desbaillets I, de Tribolet N (1994) Analysis of cytokine receptor messenger RNA expression in human glioblastoma cells and normal astrocytes by reverse-transcription polymerase chain reaction. J Neurosurg 80:1063–1073

    Article  PubMed  CAS  Google Scholar 

  • Takano S, Tsuboi K, Matsumura A, Tomono Y, Mitsui Y, Nose T (2000) Expression of the angiogenic factor thymidine Phosphorylase in human astrocytic tumors. J Cancer Res Clin Oncol 126:145–152

    Article  PubMed  CAS  Google Scholar 

  • Tas MP, Murray JC (1996) Endothelial-monocyte-activating polypeptide II. Int J Biochem Cell Biol 28:837–841

    Article  PubMed  CAS  Google Scholar 

  • van Meir EG (1995) Cytokines and tumors of the central nervous system. Glia 15:264–288

    Article  PubMed  Google Scholar 

  • Visse E, Siesjo P, Widegren B, Sjorgen HO (1999) Regression of intracerebral rat glioma isografts by therapeutic subcutaneous immunization with interferon-gamma, interleukin-7, or B7-l-transfected tumor cells. Cancer Gene Ther 6:37–44

    Article  PubMed  CAS  Google Scholar 

  • Voest EE (1996) Inhibitors of angiogenesis in a clinical perspective. Anticancer Drugs 7:723–727

    Article  PubMed  CAS  Google Scholar 

  • Wagner S, Czub S, Greif M, Vince GH, Suss N, Kerkau S, Rieckman P, Roggendorf W, Roosen K, Tonn JC (1999) Microglia/macrophage expression of interleukin 10 in human glioblastomas. Int J Cancer 82:12–16

    Article  PubMed  CAS  Google Scholar 

  • Weiler M, Fontana A (1995) The failure of current immunotherapy for malignant glioma: tumor derived TGF-β, T-cell apoptosis, and the immune privilege of the brain. Brain Res Rev 21:128–151

    Article  Google Scholar 

  • Wesseling P, Ruiter DJ, Burger PC (1997) Angiogenesis in brain tumors; pathobiological and clinical aspects. J Neurooncol 32:253–265

    Article  PubMed  CAS  Google Scholar 

  • Weyerbrock A, Oldfield EH (1999) Gene transfer technologies for malignant gliomas. Curr Opin Oncol 11:168–173

    Article  PubMed  CAS  Google Scholar 

  • Yamada N, Kato M, Yamashita H, Nister M, Miyazono K, Heldin CH, Funa K (1995) Enhanced expression of transforming growth factor-beta and its type-I and type-II receptors in human glioblastoma. Int J Cancer 62:386–392

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schluesener, H.J., Meyermann, R., Deininger, M. (2002). Immune Responses in Glioblastoma: an Avenue to Effective Cancer Therapy or a Mere Epiphenomenon?. In: Dietzschold, B., Richt, J.A. (eds) Protective and Pathological Immune Responses in the CNS. Current Topics in Microbiology and Immunology, vol 265. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09525-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09525-6_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07655-8

  • Online ISBN: 978-3-662-09525-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics