Skip to main content

Parasites and the Brain: Neuroinvasion, Immunopathogenesis and Neuronal Dysfunctions

  • Chapter

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 265))

Abstract

Infections of the nervous system by parasites such as protozoa and helminthes still represent a major health problem. Control programs have been efficient in reducing the incidence of some parasitic infections of the nervous system such as American trypanosomiasis (Chagas’ disease). However, this is not the case for other infections such as African trypanosomiasis, cerebral malaria and neurocysticercosis. Human African trypanosomiasis affects more than 300,000 individuals in sub-Saharan Africa (Smith et al. 1998). Malaria may kill between 1.5 and 2.7 million people every year, cerebral malaria being a major cause of death among children in certain regions (Greenwood 1997). Neurocysticercosis is endemic in most developed and developing countries in Latin America, in several countries in Africa and Asia, in certain European countries and, in general, in developed countries with high rates of immigration from endemic areas (Pittella 1997). It accounts for most new-onset epilepsy cases in children and adults in developing countries, which in some regions may range from 10 to 15 patients per 1,000 inhabitants (Mitchell 1999; Román et al. 2000). As a consequence of HIV/AIDS infections and immunosuppressive therapies, toxoplasmic encephalitis has also become prevalent, e.g. a fourth to half the number of adult Toxoplasma seropositive patients with HIV infections may develop toxoplasmic encephalitis (Jones et al. 1996; Mitchell 1999).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams JH, Haller L, Boa FY, Doua F, Dago A, Konian K (1986) Human African trypanosomiasis (T.b. Gambiense): a study of 16 fatal cases of sleeping sickness with observations on acute reactive arsenical encephalopathy. Neuropath Appl Neurol 12:81–94

    CAS  Google Scholar 

  • Barnard CJ (1990) Parasitic relationships. In: Barnard CJ, Behnke JM (eds) Parasitism and host behaviour. Taylor & Francis, London, pp 1–33

    Google Scholar 

  • Baruch D, Pasloske BL, Singh HB, Bi X, Ma X, Feldman M, Taraschi T, Howard R (1995) Cloning the P. falciparum gene encoding PfEMP-1, a malaria variant antigen and adherence receptor on the surface of parasitized human erythrocytes. Cell 82:77–87

    PubMed  CAS  Google Scholar 

  • Bentivoglio M, Florenzano F, Peng Z-C, Kristensson K (1994a) Neuronal IFN-γ in the tuberomamm-illary neurones. Neuro Report 5:2413–2416

    CAS  Google Scholar 

  • Bentivoglio M, Grassi-Zucconi G, Peng Z-C, Bassetti A, Edlund C, Kristensson K (1994b) Trypano-somes cause dysregulation of c-fos expression in the rat suprachiasmatic nucleus. Neuro Report 5:712–714

    CAS  Google Scholar 

  • Bentivoglio M, Grassi-Zucconi G (1998) Immediate early gene expression in sleep and wakefulness. In: Lydic R, Baghdoyan H (eds) Handbook of Behavioral State Control. CRC Press, Boca Raton, FL, pp 235–253

    Google Scholar 

  • Berdoy M, Webster JP, Macdonald DW (2000) Fatal attraction in rats infected with Toxoplasma gondii. Proc R Soc Lond B 267:1591–1594

    CAS  Google Scholar 

  • Brown H, Hient TT, Day N, Mai NTH, Chuong LV, Chau TTH, Loc PP, Phu NH, Bethell D, Farrar J, Gatter K, White N, Turner G (1999) Evidence of blood-brain barrier dysfunction in human cerebral malaria. Neuropath Appl Neurobiol 25:331–340

    CAS  Google Scholar 

  • Buguet A, Gati R, Sevre JP, Develoux M, Bogui P, Lonsdorfer J (1989) 24 hour Polysomnographic evaluation in a patient with sleeping sickness. Electroencephalogr Clin Neurophysiol 72:471–478

    PubMed  CAS  Google Scholar 

  • Buguet A, Bert J, Tapie P, Tabaraud F, Doua F, Lonsdorfer J, Bogui P, Dumas M (1993) Sleep-wake cycle in human African trypanosomiasis. J Clin Neurophysiol 10:190–196

    PubMed  CAS  Google Scholar 

  • Cardona AE, Restrepo BI, Jaramillo JM, Teale JM (1999) Development of an animal model for neurocysticercosis: immune response in the central nervous system is characterized by a predominance of γδ T cells. J Immunol 162:995–1002

    PubMed  CAS  Google Scholar 

  • Cassone M (1990) Effects of melatonin on vertebrate circadian systems. Trends Neurosci 13:457–464

    PubMed  CAS  Google Scholar 

  • Castellani A (1914) Note on certain protozoa-like bodies in a case of protracted fever and splenomegaly. J Trop Med 17:113–119

    Google Scholar 

  • Chao CC, Anderson WR, Hu S, Gekker G, Martella A, Peterson PK(1993) Activated microglia inhibit multiplication of Toxoplasma gondii via a nitric oxide mechanisms. Clin Immunol Immunopathol 67:178–183

    PubMed  CAS  Google Scholar 

  • Chianella S, Semprevivo M, Peng Z-C, Zaccheo D, Bentivoglio M, Grassi-Zucconi G (1999) Microglia activation in a model of sleep disorder: An immunohistochemical study in the rat brain during Trypanosoma brucei infection. Brain Res 832:54–62

    PubMed  CAS  Google Scholar 

  • Chimelli L, Scaravilli F (1997) Trypanosomiasis. Brain Pathol 7:599–611

    PubMed  CAS  Google Scholar 

  • Clark I, Rockett K, Cowden, W (1991) Proposed link between cytokines, nitric oxide and human cerebral malaria. Parasitol Today 7:205–207

    PubMed  CAS  Google Scholar 

  • Clark I, Rockett K (1994) The cytokine theory of human cerebral malaria. Parasitol Today 10:410–412

    PubMed  CAS  Google Scholar 

  • Clark I, al Yaman FM, Jacobson LS (1997) The biological basis of malarial disease. Int J Parasitol 27:1237–1249

    PubMed  CAS  Google Scholar 

  • Claustrat B, Buguet A, Geoffriau M, Bogui P, Mouanga G, Stanghellini A, Dumas M (1998) Plasma melatonin rhythm is maintained in human African trypanosomiasis. Neuroendocrinology 68:64–70

    PubMed  CAS  Google Scholar 

  • Cohen BA (1999) Neurologic manifestations of toxoplasmosis in AIDS. Semin Neurol 19:201–211

    PubMed  CAS  Google Scholar 

  • Crawley J, Waruiru C, Mithwani S, Mwangi I, Watkins W, Ouma D, Winstanley P, Peto T, Marsh K (2000) Effect of phénobarbital on seizure frequency and mortality in childhood cerebral malaria: a randomised, controlled intervention study. Lancet 355:701–706

    PubMed  CAS  Google Scholar 

  • De Kruif P (1954) Microbe hunters. Harcourt Brace, New York

    Google Scholar 

  • De Simoni MG, Perego C, Ravizza T, Moneta D, Conti M, Marchesi F, De Luigi A, Garattini S, Vezzani A (2000) Inflammatory cytokines and related genes are induced in the rat hippocampus by limbic status epilepticus. Eur J Neurosci 12:2623–2633

    PubMed  Google Scholar 

  • Donelson J, Hill KL, El-Sayed NMA (1998) Multiple mechanisms of immune evasion by African trypanosomes. Mol Biochem Parasitol 91:51–66

    PubMed  CAS  Google Scholar 

  • Dubocovich ML, Benloucif S, Masana MI (1996) Melatonin receptors in the mammalian suprachias-matic nucleus. Behav Brain Res 73:141–147

    PubMed  CAS  Google Scholar 

  • Dumas M, Girard PL (1979) Sleeping sickness. Trends Neurosci 2:24–26

    Google Scholar 

  • Dumas M, Bisser S (1999) Clinical aspects of human African trypanosomiasis. In: Dumas M, Bouteille B, Buguet A (eds) Progress in Human African Trypanosomiasis, Sleeping Sickness. Springer-Verlag, Paris, pp 215–233

    Google Scholar 

  • Fagard R, van Tan H, Creuzet C, Pelloux H (1999) Differential development of Toxoplasma gondii in neural cells. Parasitol Today 15:504–507

    PubMed  CAS  Google Scholar 

  • Flegr J, Hrdy I (1994) Influence of chronic toxoplasmosis on some human personality factors. Folia Parasitol 41:122–126

    PubMed  CAS  Google Scholar 

  • Gehrmann J, Matsumto Y, Kreutzberg GW (1995) Microglia: intrinsic immuneffector cell of the brain. Brain Res Rev 20:269–287

    PubMed  CAS  Google Scholar 

  • González-Scarano F, Baituch G (1999) Microglia as mediators of inflammatory and degenerative diseases. Annu Rev Neurosci 22:219–240

    PubMed  Google Scholar 

  • Grassi-Zucconi G, Harris JA, Mohammed AH, Ambrosini MV, Kristensson K, Bentivoglio M (1995) Sleep fragmentation, and changes in locomotor activity and body temperature in trypanosome- infected rats. Brain Res Bull 37:123–129

    PubMed  CAS  Google Scholar 

  • Grassi-Zucconi G, Semprevivo M, Mocaer E, Kristensson K, Bentivoglio M (1996) Melatonin and its agonist S-20098 restore synchronized sleep fragmented by experimental trypanosome infection in the rat. Brain Res Bull 39:63–68

    PubMed  CAS  Google Scholar 

  • Grau GE, Piguet P-F, Singers HD, Louis JA, Vassalli P, Lambert P-H (1986) L3T4+ T lymphocytes play a major role in the pathogenesis of murine cerebral malaria. J Immunol 137:2348–2354

    PubMed  CAS  Google Scholar 

  • Grau GE, Heremans H, Piguet P-F, Pointaire P, Lambert P-H, Billiau A, Vassalli P (1989a) Monoclonal antibody against interferon gamma can prevent experimental cerebral malaria and its associated overproduction of tumor necrosis factor. Proc Natl Acad Sci USA 86:5572–5574

    PubMed  CAS  Google Scholar 

  • Grau GE, Taylor TE, Molyneux ME, Wirma JJ, Vassalli P, Hommel M, Lambert P-H (1989b) Tumor necrosis factor and disease severity in children with falciparum malaria. New Engl J Med 320:1586–1591

    PubMed  CAS  Google Scholar 

  • Grau GE, Lou JN (1995) Experimental cerebral malaria: possible new mechanisms in the TNF-induced microvascular pathology. Soz Präventivmed 40:50–57

    PubMed  CAS  Google Scholar 

  • Greenwood BM (1997) The epidemiology of malaria. Ann Trop Med Parasitol 91:763–769

    PubMed  CAS  Google Scholar 

  • Halonen SK, Lyman WD, Chiu FC (1996) Growth and development of Toxoplasma gondii in human neurons and astrocytes. J Neuropath Exp Neurol 55:1150–1156

    PubMed  CAS  Google Scholar 

  • Halonen SK, Weiss LM (2000) Investigation into the mechanism of gamma interferon-mediated inhibition of Toxoplasma gondii in murine astrocytes. Infect Immun 68:3426–3430

    PubMed  CAS  Google Scholar 

  • Hill KL, Hutchings NR, Grandgenett PM, Donelson JE (2000) T lymphocyte triggering factor of African trypanosome is associated with flagellar fraction of the cytoskeleton and represents a new family of proteins that are present in several divergent eukaryotes. J Biol Chem 275:39369–39378

    PubMed  CAS  Google Scholar 

  • Hrdà S, Votypka J, Kodym P, Flegr J (2000) Transient nature of Toxoplasma gondii-induced behavioral changes in mice. J Parasitol 86:657–663

    PubMed  Google Scholar 

  • Hunter CA, Kennedy PGE (1992) Immunopathology in central nervous system human African trypanosomiasis. J Neuroimmunol 36:91–95

    PubMed  CAS  Google Scholar 

  • Hunter CA, Jennings FW, Kennedy PGE, Murray M (1992a) Astrocyte activation correlates with cytokine production in central nervous system of Trypanosoma brucei bruce/-infected mice. Lab Invest 67:635–642

    PubMed  CAS  Google Scholar 

  • Hunter CA, Jennings FW, Kennedy PGE, Murray M (1992b) The use of azathioprine to ameliorate post-treatment encephalopathy associated with African trypanosomiasis. Neuropathol Appl Neurobiol 18:619–625

    PubMed  CAS  Google Scholar 

  • Hunter CA, Remington JS (1994) Immunopathogenesis of toxoplasmic encephalitis. J Infect Dis 170:1057–1067

    PubMed  CAS  Google Scholar 

  • Jackson MH, Hutchison WM (1989) The prevalence and source of Toxoplasma infection in the environment. Adv Parasitol 28:55–105

    PubMed  CAS  Google Scholar 

  • Jennings FW, Whitelaw DD, Holmes PH, Chizyuka HGB, Urquhart GM (1979) The brain as a source of relapsing Trypanosoma brucei infection in mice after chemotherapy. Int J Parasitol 9:381–384

    PubMed  CAS  Google Scholar 

  • Jones JL, Hanson DL, Chu SY, Ciesielski CA, Kaplan JE, Ward JW, Navin TR (1996) AIDS 10:1393–1399

    PubMed  CAS  Google Scholar 

  • Jun CD, Kim SH, Soh CT, Kang SS, Chung HT (1993) Nitric oxide mediates the toxoplasmastatic activity of murine microglial cells in vitro. Immunol Invest 22:487–501

    PubMed  CAS  Google Scholar 

  • Keita M, Bouteille B, Enanga B, Vallat JM, Dumas M (1997) Trypanosoma brucei brucei: a long-term model of human African trypanosomiasis in mice, meningo-encephalitis, astrocytosis, and neurological disorders. Exp Parasitol 85:183–192

    PubMed  CAS  Google Scholar 

  • Kristensson K, Claustrat B, Mhlanga JDM, Moller M (1998) African trypanosomiasis in the rat alters melatonin secretion and melatonin receptor binding in the suprachiasmatic nucleus. Brain Res Bull 47:265–269

    PubMed  CAS  Google Scholar 

  • Kristensson K, Bentivoglio M (1999) Pathology of African trypanosomiasis. In: Dumas M, Bouteille B, Buguet A (eds) Progress in Human African Trypanosomiasis, Sleeping Sickness. Springer-Verlag, Paris, pp 157–181

    Google Scholar 

  • Kubata BK, Eguchi N, Urade Y, Yamashita K, Mitamura T, Tai K, Hayaishi O, Horii T (1998) Plasmodium falciparum produces prostaglandins that are pyrogenic, somnogenic, and immunosup-presive substances in humans. J Exp Med 188:1197–1202

    CAS  Google Scholar 

  • Kubata BK, Duszenko M, Kabututu Z, Fujimori K, Inui T, Horii T, Urade Y, Hayaishi O (1999) Prostaglandin biosynthesis in parasitic protozoan Trypanosoma b. brucei. Sleep Res Online 2 (suppl 1):687

    Google Scholar 

  • Lundkvist G, Christenson J, ElTayeb RAK, Peng Z-C, Grillner P, Mhlanga J, Bentivoglio M, Kristensson K (1998a) Altered neuronal activity rhythm and glutamate receptor expression in the suprachiasmatic nuclei of Trypanosoma brucei-infected rats. J Neuropath Exp Neurol 57:21–29

    PubMed  CAS  Google Scholar 

  • Lundkvist G, Robertson B, Mhlanga J, Rottenberg M, Kristensson K (1998b) Expression of an oscillating interferon-gamma receptor in the rat suprachiasmatic nuclei. NeuroReport 9:1059–1063

    PubMed  CAS  Google Scholar 

  • Luscinskas FW, Lawler J (1994) Integrins as dynamic regulators of vascular function. FASEB J 8: 929–938

    PubMed  CAS  Google Scholar 

  • Lüder CGK, Giraldo-Velásques M, Sendtner M, Gross U (1999) Toxoplasma gondii in primary rat CNS cells: differential contribution of neurons, astrocytes, and microglial cells for intracerebral development and stage differentiation. Exp Parasitol 93:23–32

    PubMed  Google Scholar 

  • Ma N, Madigan MC, Chan-Ling T, Hunt NH (1997) Compromised blood-nerve barrier, astrogliosis, and myelin disruption in optic nerves during fatal murine cerebral malaria. Glia 19:135–151

    PubMed  CAS  Google Scholar 

  • Mabbott NA, Coulson PS, Smythies LE; Wilson RA, Sternberg JM (1998) African trypanosome infections in mice that lack the interferon-γ receptor gene: nitric oxide-dependent and independent suppression of T-cell proliferative responses and the development of anaemia. Immunology 94:476–480

    PubMed  CAS  Google Scholar 

  • Martinez AJ, Duma RJ, Nelson EC, Moretta FL (1973) Experimental Naegleria meningoencephalitis in mice. Penetration of the olfactory mucosal epithelium by Naegleria and pathological changes produced: a light and electron microscope study. Lab Invest 29:121–133

    PubMed  CAS  Google Scholar 

  • Medana IM, Chan-Ling T, Hunt NH (1996) Redistribution and degeneration of retinal astrocytes in experimental murine cerebral malaria: relationship to disruption of the blood-retinal barrier. Glia 16:51–64

    PubMed  CAS  Google Scholar 

  • Medana IM, Hunt NH, Chan-Ling T (1997) Early activation of microglia in the pathogenesis of fatal murine cerebral malaria. Glia 19:91–103

    PubMed  CAS  Google Scholar 

  • Mhlanga JDM (1994) Antigenic variation in Trypanosoma brucei, a relationship with poly ADP-ribose polymerase. Thesis, University of Sussex, UK

    Google Scholar 

  • Mhlanga JDM (1996) Sleeping sickness: Perspectives in African trypanosomiasis. Sci Progr 79:183–214

    PubMed  Google Scholar 

  • Mhlanga JDM, Bentivoglio M, Kristensson K (1997) Neurobiology of cerebral malaria and African sleeping sickness. Brain Res Bull 44:579–589

    PubMed  CAS  Google Scholar 

  • Miller LH, Mason SJ, Dvorak DJ, McGinniss MH, Rothman TK (1975) Erythrocyte receptors for (Plasmodium knowlesi) malaria: Duffy blood group determinants. Science 189:561–563

    PubMed  CAS  Google Scholar 

  • Miller LH, Good MF, Milon G (1994) Malaria pathogenesis. Science 264:1878–1883

    PubMed  CAS  Google Scholar 

  • Mitchell WG (1999) Neurocysticercosis and acquired cerebral toxoplasmosis in children Sem Ped Neurol 6:267–277

    CAS  Google Scholar 

  • Montmayeur A, Buguet A (1994) Time-related changes in the sleep-wake cycle of rats infected with Trypanosoma brucei brucei. Neurosci Lett 168:172–174

    PubMed  CAS  Google Scholar 

  • Moore J, Gotelli NJ (1990) Phylogenetic perspective on the evolution of altered host behaviours: a critical look at the manipulation hypothesis. In: Barnard CJ, Behnke JM (eds) Parasitism and host behaviour. Taylor & Francis, London, pp 193–233

    Google Scholar 

  • Mulenga C, Mhlanga JDM, Kristensson K, Robertson B (2001) Trypanosoma brucei brucei crosses the blood-brain barrier while tight junction proteins are preserved, in a rat chronic disease model. Neuropath Appl Neurobiol 27:77–85

    CAS  Google Scholar 

  • Namangala B, de Baetselier P, Brijs L, Stijlemans B, Noël W, Pays E, Carrington M, Beschin A (2000) Attenuation of Trypanosoma brucei is associated with reduced immunosuppression and concomitant production of Th2 lymphokines. J Infect Dis 181:1110–1120

    PubMed  CAS  Google Scholar 

  • Nicolle C, Manceaux L (1908) Sur une infection à corps de Leishman (ou organismes voisins) du gondi. Compt Rend Hebd Sean Acad Sci Paris 147:763–766

    Google Scholar 

  • Olsson T, Bakhiet M, Höjeberg B, Ljungdahl A, Edlund C, Andersson G, Ekre H-P, Fung-Leung W-P, Mak T, Wigzell H, Fiszer U, Kristensson K (1993) CD8 is critically involved in lymphocyte activation by a T. brucei brucei-released molecule. Cell 72:715–728.

    PubMed  CAS  Google Scholar 

  • O’Neill DP, Conner DH (1997) Cysticercosis. In Connor DH, Chandler FW, Manz HJ, Schwartz DA, Lack EE (eds) Pathology of Infectious Diseases. Appleton & Lange, Stanford, CT

    Google Scholar 

  • O’Neill JF (1998) The ocular manifestations of congenital infection: a study of the early effect and long-term outcome of maternally transmitted rubella and toxoplasma. Tr Am Ophth Soc 96:813–879

    PubMed  Google Scholar 

  • Peng Z-C, Kristensson K, Bentivoglio M (1994) Dysregulation of photic induction of Fos-related protein in the biological clock during experimental trypanosomiasis. Neurosci Lett 182:104–106

    PubMed  CAS  Google Scholar 

  • Pentreath VW, Cookson MR, Ingram GA, Mead C, Alafiatayo RA (1994) Trypanosoma brucei products activate components of the reactive response in astrocytes in vitro. Bull Soc Pathol Exot 87:323–329

    PubMed  CAS  Google Scholar 

  • Pittella JEH (1997) Neurocysticercosis. Brain Pathol 7:681–693

    PubMed  CAS  Google Scholar 

  • Poulin R (1994) The evolution of parasite manipulation of host behaviour: a theoretical analysis. Parasitology 109.S109–S118

    PubMed  Google Scholar 

  • Quan N, Mhlanga JDM, Whiteside B, McCoy AN, Kristensson K, Herkenham M (1999) Chronic overexpression of proinflammatory cytokines and histopathology in the brains of rats infected with Trypanosoma brucei. J Comp Neurol 414:114–130

    PubMed  CAS  Google Scholar 

  • Quan N, Mhlanga JDM, Whiteside MB, Kristensson K, Herkenham M (2000) Chronic sodium salicylate treatment exacerbates brain neurodegeneration in rats infected with Trypanosoma brucei. Neuroscience 96:181–194

    PubMed  CAS  Google Scholar 

  • Radermecker J (1956) Leucoencéphalite à parasites connus: La trypanosomiase. Systématique et électroéncephalographiedes encéphalites et encéphalopathies. Electroenceph Clin Neurophysiol 117–124

    Google Scholar 

  • Radomski MW, Brandenberger G (1999) Hormones in human African trypanosomiasis. In: Dumas M, Bouteille B, Buguet A (eds) Progress in Human African Trypanosomiasis, Sleeping Sickness. Springer-Verlag, Paris, pp 183–190

    Google Scholar 

  • Radomski MW, Buguet A, Bogui P, Doua F, Lonsdorfer A, Tapie P, Dumas M (1994) Disruption in the secretion of Cortisol, prolactin, and certain cytokines in human African trypanosomiasis. Bull Soc Path Exp 87:376–379

    CAS  Google Scholar 

  • Rest JR (1982) Cerebral malaria in inbred mice: 1. a new model and its pathology. Trans R Soc Trop Med Hyg 76:410–415

    PubMed  CAS  Google Scholar 

  • Rhind SG, Shek PN (1999) Cytokines in the pathogenesis of human African trypanosomiasis: antagonistic roles of TNF-α and IL-10. In: Dumas M, Bouteille B, Buguet A (eds) Progress in human African Trypanosomiasis, sleeping sickness. Springer-Verlag, Paris, pp 119–135

    Google Scholar 

  • Rizzo G (1995) Other frequent C.N.S. involvement in tropical disease. In: Clifford Rose F (ed) Recent advances in tropical neurology. Elsevier, Amsterdam, pp 63–73

    Google Scholar 

  • Robertson B, Xu X.-J, Hao J-X, Wiesenfeld-Hallin Z, Mhlanga J, Grant G, Kristensson K (1997) Interferon-γ receptors in nociceptive pathways: role in neuropathic pain-related behavior. Neuro-Report 8:1311–1316

    CAS  Google Scholar 

  • Roman G, Sotelo J, Del Brutto O, Flisser, Dumas M, Wadia N, Botero D, Cruz M, Garcia H, de Bittencourt PRM, Trelles L, Arriagada C, Lorenzana P, Nash TE, Spina-França A (2000) A proposal to declare neurocysticercosis as international reportable disease. Bull World Health Org 78:399–406

    PubMed  CAS  Google Scholar 

  • Rubin LL, Staddon JM (1999) The cell biology of the blood-brain barrier. Annu Rev Neurosci 22:11–28

    PubMed  CAS  Google Scholar 

  • Sabin AB (1941) Toxoplasmic encephalitis in children. J Amer Med Assoc 116:801–807

    Google Scholar 

  • Schleifer KW, Mansfield JM (1993) Suppressor macrophages in African trypanosomiasis inhibit T cell proliferative responses by nitric oxide and prostaglandins. J Immunol 151:5492–5503

    PubMed  CAS  Google Scholar 

  • Schultzberg M, Ambatsis M, Samuelsson E-B, Kristensson K, van Meirvenne N (1988) Spread of Trypanosoma brucei to the nervous system: Early attack on circumventricular organs and sensory ganglia. J Neurosci Res 21:56–61

    PubMed  CAS  Google Scholar 

  • Schultzberg M, Olsson T, Samuelsson E-B, Maehlen J, Kristensson K (1989) Early major histocompatibility complex (MHC) class I antigen induction in hypothalamic supraoptic and paraventricular nuclei in trypanosome-infected rats. J Neuroimmunol 24:105–112

    PubMed  CAS  Google Scholar 

  • Scorza T, Magez S, Brys L, de Baetselier P (1999) Hemozoin is a key factor in the induction of malaria-associated immunosuppression. Parasite Immunol 21:545–554

    PubMed  CAS  Google Scholar 

  • Senanayake N. Epidemiology of tropical neurology. In: Clifford Rose F (ed) Recent advances in tropical neurology. Elsevier, Amsterdam, pp 7–16

    Google Scholar 

  • Smith DH, Pepin J, Stich AHR (1998) Human African trypanosomiasis: an emerging public health crisis. Brit Med Bull 54:341–355

    PubMed  CAS  Google Scholar 

  • Smith JD; Peterson DS, Pinches R, Newbold CI, Miller LH (1995) Switches in expression of Plasmodium falciparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes. Cell 82:101–110

    PubMed  CAS  Google Scholar 

  • Stoll G, Jander S (1999) The role of microglia and macrophages in the pathophysiology of the CNS. Progr Neurobiol 58:233–247

    CAS  Google Scholar 

  • Streit WJ, Walter SA, Pennell NA (1999) Reactive microgliosis. Progr Neurobiol 57:563–581

    CAS  Google Scholar 

  • Su X-Z, Heatvole V, Wertheimer S, Guinet F, Herrfeldt J, Peterson DS, Ravetch JA, Wellems TE (1995) The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of Plasmodium falciparum-infected erythrocytes. Cell 82:89–100

    PubMed  CAS  Google Scholar 

  • Subauste CS, Wessendarp M (2000) Human dendritic cells discriminate between viable and killed Toxoplasma gondii tachyzoites: dendritic cell activation after infection with viable parasites results in CD28 and CD40 ligand signaling that controls IL-12-dependent and-independent T cell production of IFN-γ. J Immunol 165:1498–1505

    PubMed  CAS  Google Scholar 

  • Toth LA, Tolley EA, Broady R, Blakely B, Krueger JM (1994) Sleep during experimental trypanosomiasis in rabbits. P.S.E.B.M. 205:174–181

    CAS  Google Scholar 

  • Turner G (1997) Cerebral malaria. Brain Pathol 7:569–582

    PubMed  CAS  Google Scholar 

  • Urban BC, Ferguson DJ, Pain A, Willcox N, Plebanski M, Austyn JM, Roberts DJ (1999) Plasmodium falciparum-infected erythrocytes modulate the maturation of dendritic cells. Nature 400:73–77

    PubMed  CAS  Google Scholar 

  • Urade Y, Hayaishi O (1999) Prostaglandin D2 and sleep regulation. Biochem Biophys Acta 1436:606–615

    PubMed  CAS  Google Scholar 

  • Vaidya T, Bakhiet B, Hill KL, Olsson T, Kristensson K, Donelson JE (1997) The gene for a T-lymphocyte triggering factor from African trypanosomes. J Exp Med 186:433–438

    PubMed  CAS  Google Scholar 

  • Wahlgren M, Treutiger CJ, Gysin J (1999) Cytoadherence and rosetting in the pathogenesis of severe malaria. In: Wahlgren M, Perlmann P (eds) Malaria. Molecular and Clinical Aspects. Harwood Academic Publ, pp 289–327

    Google Scholar 

  • Watkins LR, Maier SF (1999) Implications of immune-to-brain communiation for sickness and pain. Proc Natl Acad Sci 96:7710–7713

    PubMed  CAS  Google Scholar 

  • White Jr AC (2000) Neurocysticercosis: Updates on epidemiology, pathogenesis, diagnosis, and management. Annu Rev Med 51:187–206

    PubMed  CAS  Google Scholar 

  • White AC, Robinson P, Kuhn R (1997) Taenia solium cysticercosis: host-parasite interactions and the immune response. Chem Immunol 66:209–230

    PubMed  Google Scholar 

  • World Health Organization (Division of Control of Tropical Diseases) (1990) Severe and complicated malaria. Trans Roy Soc Trop Med Hyg 84 (suppl. 2):1–65

    Google Scholar 

  • Vickerman K (1985) Development cycles and biology of pathogenic trypanosomes. Br Med Bull 41: 105–114

    PubMed  CAS  Google Scholar 

  • Wickler W (1976) Evolution-oriented ethology, kin selection and altruistic parasites. Z Tierpsychol 42:206–214

    PubMed  CAS  Google Scholar 

  • Wiesenfeld-Hallin Z, Kristensson K, Samuelsson E-B, Schultzberg M (1991) Studies of hyperalgesia induced by Trypanosoma brucei brucei infection in rats. Acta Trop 48:215–222

    PubMed  CAS  Google Scholar 

  • Vikman KS, Owe-Larsson B, Brask J, Kristensson K, Hill RH (2001) Interferon-γ-induced changes in synaptic activity and AMPA receptor clustering in hippocampal cultures. Brain Res 896:18–29

    PubMed  CAS  Google Scholar 

  • Wilson CB, Remington JS, Stagno S, Reynolds DW (1980) Development of adverse sequelae in children born with subclinical congenital Toxoplasma infection. Pediatrics 66:767–774

    PubMed  CAS  Google Scholar 

  • Wong D, Prameya R, Dorovini-Zis K (1999) In vitro adhesion and migration of T lymphocytes across monolayers of human microvessel endothelial cells: regulation by ICAM-1, VCAM-1, E-selectin and PECAM-1. J Neuropathol Exp Neurol 58:138–152

    PubMed  CAS  Google Scholar 

  • Xu X-J, Hao J-X, Olsson T, Kristensson K, van der Meide PH, Wiesenfeld-Hazzin Z (1994) Intrathecal interferon-gamma facilitates the spinal nociceptive flexor reflex in the rat. Neurosci Lett 182:263–266

    PubMed  CAS  Google Scholar 

  • Yap GS, Sher A (1999) Cell-mediated immunity to Toxoplasma gondii: initiation, regulation and effector function. Immunobiology 201:240–247

    PubMed  CAS  Google Scholar 

  • Yuhas Y, Shulman L, Weizman A, Kaminsky E, Vanichkin A, Ashenazi S (1999) Involvement of tumor necrosis factor alpha and interleukin-1beta in enhancement of seizures by Shigella dysenteriae. Infect Immun 67:1455–1460

    PubMed  CAS  Google Scholar 

  • Zhang J-R, Tuomanen E (1999) Molecular and cellular mechanisms for microbial entry into the CNS. J Neuro Virol 5:591–603

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kristensson, K., Mhlanga, J.D.M., Bentivoglio, M. (2002). Parasites and the Brain: Neuroinvasion, Immunopathogenesis and Neuronal Dysfunctions. In: Dietzschold, B., Richt, J.A. (eds) Protective and Pathological Immune Responses in the CNS. Current Topics in Microbiology and Immunology, vol 265. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09525-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09525-6_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07655-8

  • Online ISBN: 978-3-662-09525-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics