Jacobi-Davidson Methods and Preconditioning with Applications in Pole-zero Analysis

  • J. Rommes
  • H. A. van der Vorst
  • E. J. W. ter Maten
Conference paper
Part of the The European Consortium for Mathematics in Industry book series (MATHINDUSTRY, volume 5)


The application of Jacobi-Davidson style methods in electric circuit simulation will be discussed in comparison with other iterative methods (Arnoldi) and direct methods (QR, QZ). Preconditioning of the correction equation is used to improve the Jacobi-Davidson process, but also reveals some problems in the correction equation.


Iterative Method Correction Equation Convergence History Arnoldi Method Analog Electric Circuit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
    Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., and van der Vorst, H., Eds. Templates for the Solution of Algebraic Eigenvalue Problems: a Practical Guide. SIAM, 2000.Google Scholar
  3. 3.
    Bomhof, C. Iterative and parallel methods for linear systems, with applications in circuit simulation. PhD thesis, Utrecht University, 2001.MATHGoogle Scholar
  4. 4.
    Feldmann, P., and Freund, R.W. Efficient linear circuit analysis by Padé approximation via the Lanczos process. IEEE Trans. CAD 14 (1995), 639–649.Google Scholar
  5. 5.
    Fokkema, D.R., Sleijpen, G.L., and van der Vorst, H.A. Jacobi-Davidson style QR and QZ algorithms for the reduction of matrix pencils. SIAM J. Sc. Comp 20, 1 (1998), 94–125.CrossRefGoogle Scholar
  6. 6.
    Rommes, J. Jacobi-Davidson methods and preconditioning with applications in pole-zero analysis. Master’s thesis, Utrecht University, 2002.Google Scholar
  7. 7.
    Saad, Y. Iterative methods for sparse linear systems. PWS Publishing Company, 1996.Google Scholar
  8. 8.
    Sleijpen, G.L., and van der Vorst, H.A. A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems. SIAM Review 42, 2 (2000), 267–293.MathSciNetCrossRefGoogle Scholar
  9. 9.
    ter Maten, E.J.W. Numerical methods for frequency domain analysis of electronic circuits. Surv. Maths. Ind 8 (1998), 171–185.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • J. Rommes
    • 1
  • H. A. van der Vorst
    • 1
  • E. J. W. ter Maten
    • 2
  1. 1.Utrecht UniversityThe Netherlands
  2. 2.Philips Research LaboratoriesEindhoven University of TechnologyThe Netherlands

Personalised recommendations