Multiple Quantum Coherence

  • Charles P. Slichter
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 1)

Abstract

In Chapter 5 we introduced the density matrix as a powerful tool for the analysis of magnetic resonance experiments. In analyzing the case of spin ½, we saw that the diagonal elements of ϱ were connected with the magnetization parallel to the static field, and the off-diagonal elements were related to the transverse components through the equations
$$\langle {M^ + }(t)\rangle = \gamma \hbar \rho - + (t)and$$
(5.257a)
$$\langle {M_Z}(t)\rangle = \frac{{\gamma \hbar }}{2}[{\rho _{ + + }}(t) - {\rho _{ - - }}(t)].$$
(5.257b)

Keywords

Benzene Coherence Hull Peri Acetylene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 9.1
    G. Bodenhausen: Prog. Nucl. Magn. Reson. Spectrosc. 14, 137 (1981)CrossRefGoogle Scholar
  2. 9.2
    H. Hatanaka, T. Terao, T. Hashi: J. Phys. Soc. Japan 39, 835 (1975)ADSCrossRefGoogle Scholar
  3. 9.3
    H. Hatanaka, T. Hashi: J. Phys. Soc. Japan 39, 1139 (1975)ADSCrossRefGoogle Scholar
  4. 9.4
    W.P. Aue, E. Bartholdi, R.R. Ernst: J. Chem. Phys. 64, 2229 (1976)ADSCrossRefGoogle Scholar
  5. 9.5
    D. Weitekamp: Adv. Magn. Reson 11, 111 (1983)Google Scholar
  6. 9.6
    S. Emid: Bull Magn. Reson. 4, 99 (1982)Google Scholar
  7. 9.7
    M. Munowitz, A. Pines: Science 233, 525 (1986)ADSCrossRefGoogle Scholar
  8. M. Munowitz, A. Pines: Adv. Chem. Phys. LXVI, 1 (1987)Google Scholar
  9. 9.8
    R.R. Ernst, G. Bodenhausen, A. Wokaun: Principles of Nuclear Magnetic Resonance in One and Two Dimensions ( Clarendon, Oxford 1987 )Google Scholar
  10. 9.9
    M.E. Stoll, A.J. Vega, R.W. Vaughan: Phys. Rev. A16, 1521 (1977)ADSCrossRefGoogle Scholar
  11. 9.10
    M.E. Stoll, E.K. Wolff, M. Mehring: Phys. Rev. A17, 1561 (1978)ADSCrossRefGoogle Scholar
  12. 9.11
    E.K. Wolff, M. Mehring: Phys. Lett. 70A, 125 (1979)CrossRefGoogle Scholar
  13. 9.12
    M. Mehring, P. Hafer, A. Grupp: Phys. Rev. A33, 3523 (1988)Google Scholar
  14. 9.13
    P.K. Wang, C.P. Slichter, J.H. Sinfelt: Phys. Rev. Lett. 53, 82 (1984)ADSCrossRefGoogle Scholar
  15. 9.14
    G.E. Pake: J. Chem. Phys. 16, 327 (1948)ADSCrossRefGoogle Scholar
  16. 9.15
    J. Baum, M. Munowitz, A.N. Garroway, and A. Pines: J. Chem. Phys. 83, 2015 (1985)ADSCrossRefGoogle Scholar
  17. 9.16
    E. Merzbacher: Quantum Mechanics, 2nd ed. ( Wiley, New York 1970 ) p. 167Google Scholar
  18. 9.17
    A. Wokaun, R.R. Ernst: Chem. Phys. Lett. 52, 407 (1977)ADSCrossRefGoogle Scholar
  19. 9.18
    W.S. Warren, S. Sinton, D.P. Weitekamp, A. Pines: Phys. Rev. Lett. 43, 1791 (1979)ADSCrossRefGoogle Scholar
  20. 9.19
    W.S. Warren, D.P. Weitekamp, A. Pines: J. Chem. Phys. 73, 2084 (1980)MathSciNetADSCrossRefGoogle Scholar
  21. 9.20
    Y.-S. Yen, A. Pines: J. Chem. Phys. 78, 3579 (1983)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Charles P. Slichter
    • 1
  1. 1.Department of PhysicsUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations