Advertisement

Multiple Quantum Coherence

  • Charles P. Slichter
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 1)

Abstract

In Chapter 5 we introduced the density matrix as a powerful tool for the analysis of magnetic resonance experiments. In analyzing the case of spin ½, we saw that the diagonal elements of ϱ were connected with the magnetization parallel to the static field, and the off-diagonal elements were related to the transverse components through the equations
$$\langle {M^ + }(t)\rangle = \gamma \hbar \rho - + (t)and$$
(5.257a)
$$\langle {M_Z}(t)\rangle = \frac{{\gamma \hbar }}{2}[{\rho _{ + + }}(t) - {\rho _{ - - }}(t)].$$
(5.257b)

Keywords

Matrix Element Density Matrix Dipolar Coupling Quantum Coherence Multiple Quantum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 9.1
    G. Bodenhausen: Prog. Nucl. Magn. Reson. Spectrosc. 14, 137 (1981)CrossRefGoogle Scholar
  2. 9.2
    H. Hatanaka, T. Terao, T. Hashi: J. Phys. Soc. Japan 39, 835 (1975)ADSCrossRefGoogle Scholar
  3. 9.3
    H. Hatanaka, T. Hashi: J. Phys. Soc. Japan 39, 1139 (1975)ADSCrossRefGoogle Scholar
  4. 9.4
    W.P. Aue, E. Bartholdi, R.R. Ernst: J. Chem. Phys. 64, 2229 (1976)ADSCrossRefGoogle Scholar
  5. 9.5
    D. Weitekamp: Adv. Magn. Reson 11, 111 (1983)Google Scholar
  6. 9.6
    S. Emid: Bull Magn. Reson. 4, 99 (1982)Google Scholar
  7. 9.7
    M. Munowitz, A. Pines: Science 233, 525 (1986)ADSCrossRefGoogle Scholar
  8. M. Munowitz, A. Pines: Adv. Chem. Phys. LXVI, 1 (1987)Google Scholar
  9. 9.8
    R.R. Ernst, G. Bodenhausen, A. Wokaun: Principles of Nuclear Magnetic Resonance in One and Two Dimensions ( Clarendon, Oxford 1987 )Google Scholar
  10. 9.9
    M.E. Stoll, A.J. Vega, R.W. Vaughan: Phys. Rev. A16, 1521 (1977)ADSCrossRefGoogle Scholar
  11. 9.10
    M.E. Stoll, E.K. Wolff, M. Mehring: Phys. Rev. A17, 1561 (1978)ADSCrossRefGoogle Scholar
  12. 9.11
    E.K. Wolff, M. Mehring: Phys. Lett. 70A, 125 (1979)CrossRefGoogle Scholar
  13. 9.12
    M. Mehring, P. Hafer, A. Grupp: Phys. Rev. A33, 3523 (1988)Google Scholar
  14. 9.13
    P.K. Wang, C.P. Slichter, J.H. Sinfelt: Phys. Rev. Lett. 53, 82 (1984)ADSCrossRefGoogle Scholar
  15. 9.14
    G.E. Pake: J. Chem. Phys. 16, 327 (1948)ADSCrossRefGoogle Scholar
  16. 9.15
    J. Baum, M. Munowitz, A.N. Garroway, and A. Pines: J. Chem. Phys. 83, 2015 (1985)ADSCrossRefGoogle Scholar
  17. 9.16
    E. Merzbacher: Quantum Mechanics, 2nd ed. ( Wiley, New York 1970 ) p. 167Google Scholar
  18. 9.17
    A. Wokaun, R.R. Ernst: Chem. Phys. Lett. 52, 407 (1977)ADSCrossRefGoogle Scholar
  19. 9.18
    W.S. Warren, S. Sinton, D.P. Weitekamp, A. Pines: Phys. Rev. Lett. 43, 1791 (1979)ADSCrossRefGoogle Scholar
  20. 9.19
    W.S. Warren, D.P. Weitekamp, A. Pines: J. Chem. Phys. 73, 2084 (1980)MathSciNetADSCrossRefGoogle Scholar
  21. 9.20
    Y.-S. Yen, A. Pines: J. Chem. Phys. 78, 3579 (1983)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Charles P. Slichter
    • 1
  1. 1.Department of PhysicsUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations