Spin Temperature in Magnetism and in Magnetic Resonance

  • Charles P. Slichter
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 1)

Abstract

In Chapter 5 we employed the concept of spin temperature to discuss relaxation. The idea of spin temperature was introduced by Casimir and du Pre [6.1] to give a thermodynamic treatment of the experiments of Gorter and his students on paramagnetic relaxation. It was Van Vleck [6.2] who first employed the concept for a detailed statistical mechanical calculation of the relaxation times of paramagnetic ions. Both in this case, and also in his general statistical mechanical treatment of static properties of paramagnetic atoms [6.3], he recognized and emphasized the fact that expansion of the partition function Z in powers of l/T enabled one to calculate Z without the necessity of solving for the energies and eigenfunctions of the Hamiltonian. Waller evidently was the first person to use this property [6.4]. From the partition function, one can compute all the static properties of the system, such as the specific heat, the entropy, the magnetization, and the energy. For example, the average energy of a system, Ē, at a temperature T is given by
$$ \overline E = k{T^2}\frac{\partial }{{\partial T}}\ln Z $$
(6.1)
.

Keywords

Entropy Helium Assure Nite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 6.1
    H.B.G. Casimir, F.K. duPré: Physics 5, 507 (1938)Google Scholar
  2. 6.2
    J.H. Van Vleck: Phys. Rev. 57, 426 (1940)ADSCrossRefGoogle Scholar
  3. 6.3
    J.H. Van Vleck: J. Chem. Phys. 5, 320 (1937)ADSCrossRefGoogle Scholar
  4. 6.4
    I. Waller: Z. Phys. 79, 370 (1932)ADSCrossRefGoogle Scholar
  5. 6.5
    A.G. Redfield: Phys. Rev. 98, 1787 (1955)ADSCrossRefGoogle Scholar
  6. 6.6
    C.P. Slichter, W.C. Holton: Phys. Rev. 122, 1701 (1961)ADSCrossRefGoogle Scholar
  7. 6.7
    E.H. Turner, A.M. Sachs, E.M. Purcell: Phys. Rev. 76, 465 (1949)CrossRefGoogle Scholar
  8. 6.8
    R.V. Pound: Phys. Rev. 81, 156 (1951)ADSCrossRefGoogle Scholar
  9. 6.9
    N.F. Ramsey, R.V. Pound: Phys. Rev. 81, 278 (1951)ADSCrossRefGoogle Scholar
  10. 6.10
    R.V. Pound, E.M. Purcell: Phys. Rev. 81, 279 (1951)ADSCrossRefGoogle Scholar
  11. 6.11
    J.H. Van Vleck: Nuovo Cimento Suppl. 6, Serie X, 1081 (1957)Google Scholar
  12. 6.12
    L.C. Hebel, C.P. Slichter: Phys. Rev. 113, 1504 (1959)ADSCrossRefGoogle Scholar
  13. 6.13
    A.G. Redfield: Phys. Rev. Lett. 3, 85 (1958)ADSCrossRefGoogle Scholar
  14. 6.14
    A.G. Redfield, A.G. Anderson: Phys. Rev. 116, 583 (1959)ADSCrossRefGoogle Scholar
  15. 6.15
    R.W. Morse, H.V. Bohm: Phys. Rev. 108, 1094 (1957)ADSCrossRefGoogle Scholar
  16. 6.16
    L. Cooper: Phys. Today 26, (31 July 1973 )Google Scholar
  17. 6.17
    A.G. Anderson: Phys. Rev. 115, 863 (1959)ADSCrossRefGoogle Scholar
  18. 6.18
    A. Abragam, W.G. Proctor: Phys. Rev. 106, 160 (1957)ADSCrossRefGoogle Scholar
  19. 6.19
    A.G. Redfield: Phys. Rev. 98, 787 (1955)ADSCrossRefGoogle Scholar
  20. 6.20
    C.P. Slichter, W.C. Holton: Phys. Rev. 122, 1701 (1961)ADSCrossRefGoogle Scholar
  21. 6.21
    B.N. Provotorov: Soviet Phys. — JETP 14, 1126 (1962)MathSciNetGoogle Scholar
  22. 6.22
    R.T. Schumacher: Phys. Rev. 112, 837 (1958)ADSCrossRefGoogle Scholar
  23. 6.23
    C.P. Slichter, D. Ailion: Phys. Rev. 135, A1099 (1964)ADSCrossRefGoogle Scholar
  24. 6.24
    D. Ailion, C.P. Slichter: Phys. Rev. 137, A235 (1965)ADSCrossRefGoogle Scholar
  25. 6.25
    D.C. Look, I.J. Lowe: J. Chem. Phys. 44, 2995 (1966)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Charles P. Slichter
    • 1
  1. 1.Department of PhysicsUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations