High-K Dielectrics: The Example of Pr2O3

  • H. J. Osten
  • J. Dąbrowski
  • H.-J. Müssig
  • A. Fissel
  • V. Zavodinsky
Part of the Springer Series in MATERIALS SCIENCE book series (SSMATERIALS, volume 72)

Abstract

Praseodymium oxide is a rare earth metal oxide that has not been used for microelectronic applications so far. It has a dielectric constant in the range of 30–40 and thermodynamic estimates indicate its stability against critical reactions with silicon. We present current theoretical understanding of the grhwto of epitaxial praseodymium oxide films on a silicon substrate. In particular, we show that crystalline praseodymium oxide films can be grown on Si(001). Such crystalline films have outstanding dielectric properties, with a dielectric constant of around 30 independently of substrate doping, a very low leakage current density of 5·10−9 A/cm2 at V g = ±1.0V at t eff = 1.4 nm, and good reliability. We report on the structure and stability of thin praseodymium oxide layers on Si(001). Our results were obtained by combined Scanning Tunneling Microscopy (STM), X-ray Photoelectron Spectroscopy (XPS), and Auger Electron Spectroscopy (AES), and interpreted with the assistance of ab initio pseudopotential calculations. In particular, we present experimental evidence and a theoretical explanation for the formation of an oxygen-rich interfacial layer between the oxide and silicon.

Keywords

Silicate Manganese Boron Titanate Fluoride 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.L. Green, E.P. Gusev, R. Degrave, and E.L. Garfunkel, J. Appl. Phys. 90, 2057 (2001).CrossRefGoogle Scholar
  2. 2.
    International technology roadmap for demiconductors, http://public.itrs.net.
  3. 3.
    J. Dabrowski, V. Zavodinsky, H.-J. Müssig, and K. Ignatovich, Verhandlungen der DPG 1 /2001, 174 (2001).Google Scholar
  4. 4.
    G.D. Wilk, R.M. Wallace, and J.M. Anthony, J. Appl. Phys. 89, 5293 (2001).CrossRefGoogle Scholar
  5. 5.
    A. Fissel, J. Dabrowski, and H. J. Osten, J. Appl. Phys. 91, 8986 (2002).CrossRefGoogle Scholar
  6. 6.
    H.Y. Yang, H. Niimi, and G. Lucovsky, J. Appl. Phys. 83, 2327 (1998).CrossRefGoogle Scholar
  7. 7.
    H.J. Osten, J.P. Liu, P. Gaworzewski, E. Bugiel, and P. Zaumseil, Techn. Digest IEDM ( IEEE, Piscataway, NJ, 2000 ), p. 653.Google Scholar
  8. 8.
    J.P. Liu, P. Zaumseil, E. Bugiel, and H.J. Osten, Appl. Phys. Lett. 79, 671 (2001).CrossRefGoogle Scholar
  9. 9.
    J.T. Jones, E.T. Croke, C.-M. Garland, O.J. Marsh, and T.C. McGill, J. Vac. Sci. Technol. B16, 2686 (1998).CrossRefGoogle Scholar
  10. 10.
    A.H. Morshed, M.E. Moussa, S.M. Bedair, R. Leonard, S.X. Liu, and N. El-Masry, Appl. Phys. Lett. 70, 1647 (1997).CrossRefGoogle Scholar
  11. 11.
    D.K. Fork, D.B. Fenner, and T.H. Geballe, J. Appl. Phys. 68, 4316 (1990).CrossRefGoogle Scholar
  12. 12.
    H. Fukumoto, T. Imura, and Y. Osaka, Appl. Phys. Lett. 55, 360 (1989); Appl. Phys. Lett. 55, 360 (1989).Google Scholar
  13. 13.
    M. Ishida, I. Katakabe, T. Nakamuro, and N. Ohtake, Appl. Phys. Lett. 52, 1326 (1988).CrossRefGoogle Scholar
  14. 14.
    M. Norita, H. Fukumoto, T. Imura, Y. Osaka, and M. Ichihara, J. Appl. Phys. 58, 2407 (1985).CrossRefGoogle Scholar
  15. 15.
    T. Ami, Y. Yshida, N. Nagasawa, A. Machida, and M. Suzuki, Appl. Phys. Lett. 78, 1361 (2001).CrossRefGoogle Scholar
  16. 16.
    H.J. Osten, J. P. Liu, E. Bugiel, H.J. Müssig, and P. Zaumseil, J. Crystal Growth 235, 229 (2002).CrossRefGoogle Scholar
  17. 17.
    H. Fukumoto, T. Imura, and Y. Osaka, Appl. Phys. Lett. 55, 360 (1989).CrossRefGoogle Scholar
  18. 18.
    J. Kwo, M. Hong, A.R. Kortan, K.T. Queeney, Y.J. Chabal, J. P. Mannaerts, T. Boone, J.J. Krajewski, A.M. Sergent, and J.M. Rsamilia, Appl. Phys. Lett. 77, 130 (2000).CrossRefGoogle Scholar
  19. 19.
    T. Hiraki, K. Teramoto, H. Koike, K. Nagashima, and Y. Tarui, Jpn. J. Appl. Phys. 36, 5253 (1997).CrossRefGoogle Scholar
  20. 20.
    The oxide handbook, G.V. Samsonov (ed), 2nd ed., IFI/Plenum, New York, 1982.Google Scholar
  21. 21.
    J. Dabrowski, V. Zavodinsky, and A. Fleszar, Microel. Reliability 41, 1093 (2001).CrossRefGoogle Scholar
  22. 22.
    H.J. Osten, J.P. Liu, H.-J. Müssig, and P. Zaumseil, Microel. Reliability 41 991 (2001).CrossRefGoogle Scholar
  23. 23.
    M. Bockstedte, A. Kley, J. Neugebauer, and M. Scheffler, Comput. Phys. Commun. 107, 187 ( 1997.CrossRefGoogle Scholar
  24. 24.
    D.M Ceperley and B.J. Alder, Phys. Rev. Lett. 45, 567 (1980).CrossRefGoogle Scholar
  25. 25.
    J.P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).CrossRefGoogle Scholar
  26. 26.
    D.R. Hamann, Phys. Rev. B 40, 2980 (1989).CrossRefGoogle Scholar
  27. 27.
    G.B. Bachelet, D.R. Hamann, and M.A. Schluter, Phys. Rev. B 26, 4199 (1982).Google Scholar
  28. 28.
    L. Kleinman and D.M. Bylander, Phys. Rev. Lett. 48, 1425 (1982).CrossRefGoogle Scholar
  29. 29.
    H.J. Osten, E. Bugeil, J. Dabrowski, A. Fissel, T. Guminskaya, J.P. Liu, H.J. Müssig,and P. Zaumseil, Proc. Intern. Workshop on Gate Insulators, Tokyo 2001, p. 100.Google Scholar
  30. 30.
    D. R. Wolters and J. F. Verwey, in Instabilities in silicon devices, ed. by G. M. Barbottin and A. Vapaille (Elsevier Science, 1986 ), p. 329.Google Scholar
  31. 31.
    Y.-K. Sun, D. J. Bonser, and T. Engel, J. Vac. Sci. Technol. A 10, 2314 (1992).Google Scholar
  32. 32.
    A. Goryachko, J.P. Liu, D. Krüger, H.J. Osten, E. Bugiel, R. Kurps, and V. Melni, J. Vac. Sci. Technol. A 20, 1860 (2002).Google Scholar
  33. 33.
    H. Ogasawara, A. Kotani, R. Potze, G.A. Sawatzky, and B.T. Thole, Phys. Rev. B 44, 5465 (1991).CrossRefGoogle Scholar
  34. 34.
    D.D. Sarma and C.N.R. Rao, J. Electron. Spectrosc. Relat. Phenom. 20, 25 (1980).CrossRefGoogle Scholar
  35. 35.
    M. Yoshimoto, H. Nagata, T. Tsukahara, and K. Koinuma, Jpn. J. Appl. Phys. 29, L1199 (1990).CrossRefGoogle Scholar
  36. 36.
    E.J. Tarsa, J.S. Speck, and McD. Robinson, Appl. Phys. Lett. 63, 539 (1993).CrossRefGoogle Scholar
  37. 37.
    J. Dabrowski and H.-J. Müssig, Silicon Surfaces and Formation of interfaces: basic science in the industrial world, World Scientific, Singapore, 2000.CrossRefGoogle Scholar
  38. 38.
    M. Copel, M. Cartier, and F.M. Ross, Appl. Phys. Lett. 78, 1607 (2001).CrossRefGoogle Scholar
  39. 39.
    M. Gurvitch, L. Manchanda, and J.M. Gibson, Appl. Phys. Lett. 51, 919 (1987).CrossRefGoogle Scholar
  40. 40.
    P. Zaumseil, E. Bugiel, J.P. Liu, and H.J. Osten: Solid State Phenomena 82 - 84, 289 (2001).Google Scholar
  41. 41.
    S.Guha, E. Cartier, M.A. Gribelyuk, N.A. Bojarczuk, and M.C. Copel, Appl. Phys. Lett. 77, 2710 (2000).Google Scholar
  42. 42.
    H.J. Osten, J.P. Liu, and H.J. Müssig, Appl. Phys. Lett. 80, 297 (2002).CrossRefGoogle Scholar
  43. 43.
    U. Schwalke, K. Boye, K. Haberle, R. Heller, G. Hess, G. Müller, T. Ruland, G. Tzschöckel, H.J. Osten, A. Fissel, and H.J. Müssig, Proceedings of the 32ndESSDERC, Firenze. 2002, p. 407.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • H. J. Osten
  • J. Dąbrowski
  • H.-J. Müssig
  • A. Fissel
  • V. Zavodinsky

There are no affiliations available

Personalised recommendations