Skip to main content

Part of the book series: Springer Series in MATERIALS SCIENCE ((SSMATERIALS,volume 72))

Abstract

Praseodymium oxide is a rare earth metal oxide that has not been used for microelectronic applications so far. It has a dielectric constant in the range of 30–40 and thermodynamic estimates indicate its stability against critical reactions with silicon. We present current theoretical understanding of the grhwto of epitaxial praseodymium oxide films on a silicon substrate. In particular, we show that crystalline praseodymium oxide films can be grown on Si(001). Such crystalline films have outstanding dielectric properties, with a dielectric constant of around 30 independently of substrate doping, a very low leakage current density of 5·10−9 A/cm2 at V g = ±1.0V at t eff = 1.4 nm, and good reliability. We report on the structure and stability of thin praseodymium oxide layers on Si(001). Our results were obtained by combined Scanning Tunneling Microscopy (STM), X-ray Photoelectron Spectroscopy (XPS), and Auger Electron Spectroscopy (AES), and interpreted with the assistance of ab initio pseudopotential calculations. In particular, we present experimental evidence and a theoretical explanation for the formation of an oxygen-rich interfacial layer between the oxide and silicon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.L. Green, E.P. Gusev, R. Degrave, and E.L. Garfunkel, J. Appl. Phys. 90, 2057 (2001).

    Article  CAS  Google Scholar 

  2. International technology roadmap for demiconductors, http://public.itrs.net.

  3. J. Dabrowski, V. Zavodinsky, H.-J. Müssig, and K. Ignatovich, Verhandlungen der DPG 1 /2001, 174 (2001).

    Google Scholar 

  4. G.D. Wilk, R.M. Wallace, and J.M. Anthony, J. Appl. Phys. 89, 5293 (2001).

    Article  Google Scholar 

  5. A. Fissel, J. Dabrowski, and H. J. Osten, J. Appl. Phys. 91, 8986 (2002).

    Article  CAS  Google Scholar 

  6. H.Y. Yang, H. Niimi, and G. Lucovsky, J. Appl. Phys. 83, 2327 (1998).

    Article  CAS  Google Scholar 

  7. H.J. Osten, J.P. Liu, P. Gaworzewski, E. Bugiel, and P. Zaumseil, Techn. Digest IEDM ( IEEE, Piscataway, NJ, 2000 ), p. 653.

    Google Scholar 

  8. J.P. Liu, P. Zaumseil, E. Bugiel, and H.J. Osten, Appl. Phys. Lett. 79, 671 (2001).

    Article  CAS  Google Scholar 

  9. J.T. Jones, E.T. Croke, C.-M. Garland, O.J. Marsh, and T.C. McGill, J. Vac. Sci. Technol. B16, 2686 (1998).

    Article  CAS  Google Scholar 

  10. A.H. Morshed, M.E. Moussa, S.M. Bedair, R. Leonard, S.X. Liu, and N. El-Masry, Appl. Phys. Lett. 70, 1647 (1997).

    Article  CAS  Google Scholar 

  11. D.K. Fork, D.B. Fenner, and T.H. Geballe, J. Appl. Phys. 68, 4316 (1990).

    Article  CAS  Google Scholar 

  12. H. Fukumoto, T. Imura, and Y. Osaka, Appl. Phys. Lett. 55, 360 (1989); Appl. Phys. Lett. 55, 360 (1989).

    CAS  Google Scholar 

  13. M. Ishida, I. Katakabe, T. Nakamuro, and N. Ohtake, Appl. Phys. Lett. 52, 1326 (1988).

    Article  CAS  Google Scholar 

  14. M. Norita, H. Fukumoto, T. Imura, Y. Osaka, and M. Ichihara, J. Appl. Phys. 58, 2407 (1985).

    Article  Google Scholar 

  15. T. Ami, Y. Yshida, N. Nagasawa, A. Machida, and M. Suzuki, Appl. Phys. Lett. 78, 1361 (2001).

    Article  CAS  Google Scholar 

  16. H.J. Osten, J. P. Liu, E. Bugiel, H.J. Müssig, and P. Zaumseil, J. Crystal Growth 235, 229 (2002).

    Article  CAS  Google Scholar 

  17. H. Fukumoto, T. Imura, and Y. Osaka, Appl. Phys. Lett. 55, 360 (1989).

    Article  CAS  Google Scholar 

  18. J. Kwo, M. Hong, A.R. Kortan, K.T. Queeney, Y.J. Chabal, J. P. Mannaerts, T. Boone, J.J. Krajewski, A.M. Sergent, and J.M. Rsamilia, Appl. Phys. Lett. 77, 130 (2000).

    Article  CAS  Google Scholar 

  19. T. Hiraki, K. Teramoto, H. Koike, K. Nagashima, and Y. Tarui, Jpn. J. Appl. Phys. 36, 5253 (1997).

    Article  Google Scholar 

  20. The oxide handbook, G.V. Samsonov (ed), 2nd ed., IFI/Plenum, New York, 1982.

    Google Scholar 

  21. J. Dabrowski, V. Zavodinsky, and A. Fleszar, Microel. Reliability 41, 1093 (2001).

    Article  Google Scholar 

  22. H.J. Osten, J.P. Liu, H.-J. Müssig, and P. Zaumseil, Microel. Reliability 41 991 (2001).

    Article  Google Scholar 

  23. M. Bockstedte, A. Kley, J. Neugebauer, and M. Scheffler, Comput. Phys. Commun. 107, 187 ( 1997.

    Article  CAS  Google Scholar 

  24. D.M Ceperley and B.J. Alder, Phys. Rev. Lett. 45, 567 (1980).

    Article  Google Scholar 

  25. J.P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).

    Article  CAS  Google Scholar 

  26. D.R. Hamann, Phys. Rev. B 40, 2980 (1989).

    Article  Google Scholar 

  27. G.B. Bachelet, D.R. Hamann, and M.A. Schluter, Phys. Rev. B 26, 4199 (1982).

    Google Scholar 

  28. L. Kleinman and D.M. Bylander, Phys. Rev. Lett. 48, 1425 (1982).

    Article  CAS  Google Scholar 

  29. H.J. Osten, E. Bugeil, J. Dabrowski, A. Fissel, T. Guminskaya, J.P. Liu, H.J. Müssig,and P. Zaumseil, Proc. Intern. Workshop on Gate Insulators, Tokyo 2001, p. 100.

    Google Scholar 

  30. D. R. Wolters and J. F. Verwey, in Instabilities in silicon devices, ed. by G. M. Barbottin and A. Vapaille (Elsevier Science, 1986 ), p. 329.

    Google Scholar 

  31. Y.-K. Sun, D. J. Bonser, and T. Engel, J. Vac. Sci. Technol. A 10, 2314 (1992).

    Google Scholar 

  32. A. Goryachko, J.P. Liu, D. Krüger, H.J. Osten, E. Bugiel, R. Kurps, and V. Melni, J. Vac. Sci. Technol. A 20, 1860 (2002).

    Google Scholar 

  33. H. Ogasawara, A. Kotani, R. Potze, G.A. Sawatzky, and B.T. Thole, Phys. Rev. B 44, 5465 (1991).

    Article  CAS  Google Scholar 

  34. D.D. Sarma and C.N.R. Rao, J. Electron. Spectrosc. Relat. Phenom. 20, 25 (1980).

    Article  CAS  Google Scholar 

  35. M. Yoshimoto, H. Nagata, T. Tsukahara, and K. Koinuma, Jpn. J. Appl. Phys. 29, L1199 (1990).

    Article  CAS  Google Scholar 

  36. E.J. Tarsa, J.S. Speck, and McD. Robinson, Appl. Phys. Lett. 63, 539 (1993).

    Article  CAS  Google Scholar 

  37. J. Dabrowski and H.-J. Müssig, Silicon Surfaces and Formation of interfaces: basic science in the industrial world, World Scientific, Singapore, 2000.

    Book  Google Scholar 

  38. M. Copel, M. Cartier, and F.M. Ross, Appl. Phys. Lett. 78, 1607 (2001).

    Article  CAS  Google Scholar 

  39. M. Gurvitch, L. Manchanda, and J.M. Gibson, Appl. Phys. Lett. 51, 919 (1987).

    Article  CAS  Google Scholar 

  40. P. Zaumseil, E. Bugiel, J.P. Liu, and H.J. Osten: Solid State Phenomena 82 - 84, 289 (2001).

    Google Scholar 

  41. S.Guha, E. Cartier, M.A. Gribelyuk, N.A. Bojarczuk, and M.C. Copel, Appl. Phys. Lett. 77, 2710 (2000).

    Google Scholar 

  42. H.J. Osten, J.P. Liu, and H.J. Müssig, Appl. Phys. Lett. 80, 297 (2002).

    Article  CAS  Google Scholar 

  43. U. Schwalke, K. Boye, K. Haberle, R. Heller, G. Hess, G. Müller, T. Ruland, G. Tzschöckel, H.J. Osten, A. Fissel, and H.J. Müssig, Proceedings of the 32ndESSDERC, Firenze. 2002, p. 407.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Osten, H.J., Dąbrowski, J., Müssig, HJ., Fissel, A., Zavodinsky, V. (2004). High-K Dielectrics: The Example of Pr2O3 . In: Dabrowski, J., Weber, E.R. (eds) Predictive Simulation of Semiconductor Processing. Springer Series in MATERIALS SCIENCE, vol 72. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09432-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09432-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05804-2

  • Online ISBN: 978-3-662-09432-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics