Skip to main content

Modeling and Simulation of Heterojunction Bipolar Transistors

  • Chapter
Predictive Simulation of Semiconductor Processing

Part of the book series: Springer Series in MATERIALS SCIENCE ((SSMATERIALS,volume 72))

  • 460 Accesses

Abstract

Advances in growing nanostructure semiconductor thin films of different electronic properties and with a layer thickness approaching atomic dimensions have provided new opportunities in basic physics studies and device applications. Realization of the full potential of nanoscale heterostructures for electronic and optoelectronic device technologies requires reliable and precise predictive process and performance simulation models that are consistent with the fundamental principles of solid state physics and quantum mechanics. In this chapter, we present a general methodology, atomistic materials theory based modeling, for predicting device performance in technologically important heterostructure bipolar devices that can proceed relatively independently of experiment. The models incorporated within this general approach are extended sp 3 tight binding theory of band structures and extended drift-diffusion theory of charge carriers. Using this scheme, we have investigated the heteroemitter band alignment and charge carrier transport properties and performance of AlGaAs/GaAs heterostructure bipolar transistors (HBTs). Comparison with available experimental data shows a good agreement with the predictions of extended sp 3 tight binding theory for band offsets and extended drift-diffusion model for charge transport and device performance. Some of the issues pertinent to the modeling of Npn AlGaAs/GaAs HBTs are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Morkoç, H.Unlü, and G. Ji, Principles and technology of MODFETs, vols. 1 and 2, Wiley (1991).

    Google Scholar 

  2. H. Unlü and H. Morkoç, Solid State Technol., 31 (1988) 83.

    Google Scholar 

  3. H. Morkoç and H.Unlü, in Semiconductors and semimetals, 24 (R. Dingle, editor), (1987) 135.

    Google Scholar 

  4. H. Unlü, H. Morkoç, and S. Iyer, in Gallium arsenide technology, vol. 2 ( D. K. Ferry, editor ) (1990) 231.

    Google Scholar 

  5. H. Morkoç, H.Unlü, H. Zabel, and N. Otsuka, Solid State Technol., 31 (1988) 71.

    Google Scholar 

  6. H. Kroemer, Proc. of IRE, 45, (1957) 1535.

    Article  Google Scholar 

  7. H. Kroemer, Proc. of the IEEE, 70, 13 (1982).

    Article  Google Scholar 

  8. J. Dabrowski, H.-J. Müssig, M. Duane, S. T. Dunham, R. Goossens, and H.-H. Vuong, Advances in Solid State Physics 38 (1999) 565.

    Article  CAS  Google Scholar 

  9. S. M. Sze (ed), High speed semiconductors, Wiley (1990); and references therein.

    Google Scholar 

  10. E. T. Yu, J. O. McCaldin and T. C. McGill, Advances in Solid State Physics 46 (1992) 1.

    Article  CAS  Google Scholar 

  11. H. Unlü, phys. stat. sol. (b) 216 (1999) 107.

    Article  Google Scholar 

  12. H. Unlü, phys. stat. sol. (b) 223 (2001) 195.

    Article  Google Scholar 

  13. H. Unlü, phys. stat. sol. (b) 229 (2002) 581.

    Article  Google Scholar 

  14. H. Unlü, Comp. Mater. Sci, 21 (2001) 453.

    Google Scholar 

  15. H. Unlü, Microel. Reliability 40 (2000) 1791.

    Google Scholar 

  16. H. Unlii, Proc. 2nd Int. Conf. on Unsolved Problems of Noise and fluctuations (UPoN’99), eds. D. Abbott and L. Kish, Adelaide, Australia, 11–15th July 1999, vol. 511, ( American Institute of Physics, New York, (2000) 440.

    Google Scholar 

  17. J. E. Sutherland and J. R. Hauser, IEEE Trans. on Electron Devices, ED 24 (1977) 363.

    Article  Google Scholar 

  18. A. A. Grinberg, M. S. Shur, R. J. Fischer, and H. Morkoç, IEEE Trans. Electron Devices, ED 31 (1984) 1758.

    Article  Google Scholar 

  19. J. Yoshida, M. Kurata, K. Morizuka, and A. Hojo, IEEE Trans. on Electron Devices, ED 32 (1985) 1714.

    Article  Google Scholar 

  20. S. C. Lee and H. H. Li, J. Appl. Phys., 59 (1986) 1688.

    Google Scholar 

  21. A. Das and M. S. Lundstrom, IEEE Trans. on Electron Devices, ED 35 (1988) 863.

    Article  Google Scholar 

  22. J. J. Liu, IEEE Trans. on Electron Devices, ED 39 (1989) 1850.

    Article  Google Scholar 

  23. B. Y. Ryum and I. M. Abdel-Motalib, Solid State Electronics, 33 (1990) 896.

    Article  Google Scholar 

  24. C. D. Parikh and F. A. Lindholm, IEEE Trans. on Electron Devices, ED 39 (1992) 2197.

    Article  Google Scholar 

  25. K. Y. Yang, J. R. East, and G. I. Haddad, IEEE Trans. on Electron Devices, 41 (1994) 139.

    Article  Google Scholar 

  26. M. S. Lundstrom, Solid State Electron., 27 (1984) 491.

    Article  CAS  Google Scholar 

  27. D. L. Pulfrey and S. Searles, IEEE Trans. on Electron Devices, 40 (1993) 1183.

    Article  CAS  Google Scholar 

  28. A. A. Grinberg and S. Luryi, IEEE Trans. on Electron Devices, 40 (1994) 859.

    Article  Google Scholar 

  29. M. A. Stettler and M. S. Lundstrom, IEEE Trans. on Electron Devices, 41 (1994) 592.

    Article  CAS  Google Scholar 

  30. T. Ishibashi, IEEE Trans. on Electron devices, ED-48 (2001) 2595.

    Google Scholar 

  31. K. F. Brennan, E. Bellotti, M. Farahmand, J. Harlson II, P. P. Rudden, J. D. Alnrecht, and A. Sutandi, Solid State Electronics, 44 (2000) 195.

    Article  CAS  Google Scholar 

  32. A. W. Smith and K. F. Brennan, Prog. Quant. Electr., 21 (1998) 293.

    Article  Google Scholar 

  33. A. Nussbaum, in Semiconductors and semimetals, 15 Academic Press (1981) 39; and references therein.

    Google Scholar 

  34. R. M. Warner, Jr., and B. L. Grung, Transistors: fundamentals for the integrated circuit engineer, Wiley (1983).

    Google Scholar 

  35. R. N. Hall, Phys. Rev., 87 (1952) 387

    Article  CAS  Google Scholar 

  36. W. Shockley and W. T. Read, Jr., Phys. Rev., 87 (1952) 835.

    Article  CAS  Google Scholar 

  37. J. W. Matthews and A. E. Blakeslee, J. Crys. Growth 27 (1974) 118

    CAS  Google Scholar 

  38. J. W. Matthews and A. E. Blakeslee, J. Crys. Growth 29 (1975) 273

    Article  CAS  Google Scholar 

  39. J. W. Matthews and A. E. Blakeslee, J. Crys. Growth 32 (1976) 265.

    Article  CAS  Google Scholar 

  40. N. Lucas, H. Zabel, H. Morkoç, and H. Unlü, Appl. Phys. Lett., 52 (1988) 2117.

    Google Scholar 

  41. K. H. Yamada, T. Ogawa, and K. Wada, J. Appl. Phys., 62 (1987) 62.

    Article  Google Scholar 

  42. G. L. Bir and G. E. Pikus, Symmetry and strain-induced effects in semiconductors, John Wiley and Sons, New York, (1974).

    Google Scholar 

  43. H. Unlii, Solid State Electron., 35, (1992) 1343.

    Article  Google Scholar 

  44. A. R. Goni, K.Strossner, K.Syassen, and M. Cardona, Phys. Rev., B 36, (1987) 1581.

    Google Scholar 

  45. E. O. Kane, J. Phys. Chem. Solids, 6 (1958) 236.

    Article  CAS  Google Scholar 

  46. S. Adachi, J. Appl. Phys., 58 (1985) Rl.

    Google Scholar 

  47. H. J. Lee, L. Y. Juravel, and J. C. Wooley, Phys. Rev., B21 (1980) 659.

    CAS  Google Scholar 

  48. O. Madelung (ed), Numerical Data and Functional Relationships in Science and Technology, 17a, Springer-Verlag (1982).

    Google Scholar 

  49. O. Madelung (ed), Numerical Data and Functional Relationships in Science and Technology, 17d, Springer-Verlag (1984).

    Google Scholar 

  50. W. A. Harrison, Electronic structure and the properties of solids, Freeman (1980).

    Google Scholar 

  51. D. J. Chadi, Phys. Rev., B 16, (1977) 790.

    Google Scholar 

  52. N. H. Fletcher, J. Electron., 2 (1957) 609.

    Google Scholar 

  53. H. Ulü and A. Nussbaum, Solid State Electronics, 30 (1987) 1095.

    Article  Google Scholar 

  54. A. H. Marshak and K. M. van Vliet, Solid State Electron., 23 (1980) 1223.

    Article  CAS  Google Scholar 

  55. A. H. Marshak and K. M. van Vliet, Solid State Electron., 21 (1978) 417.

    Article  Google Scholar 

  56. N. W. Aschroft and N. D. Mermin, Solid state physics, Holt, Rinehart and Winston (1976).

    Google Scholar 

  57. A. van der Ziel, Solid state physical electronics, 3rd ed., Prentice Hall (1976).

    Google Scholar 

  58. I. S. Gradshyteyn, and I. M. Ryzhik, Table of integrals, series, and products, 5th ed. (edited by A. Jeffrey) Academic Press (1994) 81.

    Google Scholar 

  59. A. van der Ziel and P. H. Handel, IEEE Trans. on Electron Devices ED-32 (1986) 1802.

    Google Scholar 

  60. A. van der Ziel, Proc. of the IEEE 76 (1988) 233.

    Article  Google Scholar 

  61. J. Lee, B. Kim, Y. Kim, and S. Park, Solid State Electron. 37 (1994) 1485.

    Article  CAS  Google Scholar 

  62. C. T. Sah, R. N. Noyce, and W. Shockley, Proc. of the IRE, 45 (1957) 1228.

    Article  Google Scholar 

  63. W. Liu and J. S. Harris, Trans. on Electron Devices, ED-39 (1992) 2726.

    Google Scholar 

  64. P. M. Asbeck, M. C. F. Chang, K. C. Wang, G. J. Sullivan, and D. T. Cheung, Proc. of the IEEE, 81 (1994) 1709.

    Article  Google Scholar 

  65. K. Y. Yang, J. R. East, and G. I. Haddad, Solid State Electron. 36 (1993) 321.

    Article  CAS  Google Scholar 

  66. H. Unlü, Proc. of the Int. Workshop on Nitride Semiconductors, Institute of Pure and Applied Physics (IPAP) Conf. Series, Sept. 24–27, Nagoya, Japan, vol. 1, (2000) 977.

    Google Scholar 

  67. H. Unlü, in Proc. of 16th Int. Conf. on Noise in Physical Systems and 1/f Fluctuations, Gainesville, FL, USA ( G. Bosman, editor), World Scientific, Singapore (2001) 213.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ünlü, H. (2004). Modeling and Simulation of Heterojunction Bipolar Transistors. In: Dabrowski, J., Weber, E.R. (eds) Predictive Simulation of Semiconductor Processing. Springer Series in MATERIALS SCIENCE, vol 72. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09432-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09432-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05804-2

  • Online ISBN: 978-3-662-09432-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics