Atomistic Simulation of Decanano MOSFETs

  • A. Asenov
  • A. R. Brown
  • S. Kaya
Part of the Springer Series in MATERIALS SCIENCE book series (SSMATERIALS, volume 72)

Abstract

The application of 3D statistical atomistic simulation techniques to the study of intrinsic parameter fluctuations in aggressively scaled MOSFETs introduced by discreteness of charge and atomicity of matter is presented. The most commonly studied source of such fluctuations is random dopant induced effects, associated with random placement and a varying number of dopant atoms in semiconductors. We describe an efficient implementation of the atomistic simulation approach, which has been used to investigate the threshold voltage standard deviation and lowering in uniformly doped MOSFETs, and in fluctuation-resistant architectures utilising epitaxial layers and delta-doping. Threshold voltage fluctuations due to random dopants in the polysilicon gate have also been considered. The influence of a single trapped charge on the channel conductivity in decanano MOSFETs is studied in the atomistic framework as well. Quantum effects are taken into consideration in our simulations, using the density gradient formalism. The granular nature of the Si/SiO2 interface resulting in random interface roughness is also taken into account, and is shown to lead to significant fluctuations in MOSFETs in the decanano regime. Imperfect definition of line edges in lithography processes due to the molecular structure of the resist and the granularity of the gate material is accounted for in line edge roughness simulations. We point out the importance of various challenges that lie ahead in understanding and simulating a truly atomistic MOSFET.

Keywords

Dioxide Expense Autocorrelation Production Line Lution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    The International Technology Roadmap for Semiconductors, SIA 1999 Edition,http://public.itrs.net/Reports.htm
  2. 2.
    P. A. Packan, Science, vol. 285 2079 (1999).CrossRefGoogle Scholar
  3. 3.
    S. Laux and M. F. Fiscetti, IEDM Tech. Dig. 523 (1999).Google Scholar
  4. 4.
    T. Mizuno, J. Okamura and A. Toriumi, EEE Trans. Electron Devices 41 2216 (1994).CrossRefGoogle Scholar
  5. 5.
    H. S. Momose, M. Ono, T. Yoshitomi, T. Ohguro, S. Nakamura, M. Sato, and H. Ivai, IEEE Trans. Electron Devices, 43 1233 (1996).CrossRefGoogle Scholar
  6. 6.
    A. Asenov, A. R. Brown, J. H. Davies and S. Saini, IEEE Tran. CAD Integ. Circuits Sys. 18 1558 (1999).CrossRefGoogle Scholar
  7. 7.
    B. Hoeneisen and C. A. Mead, Solid-State Electron. 15 819 (1972).CrossRefGoogle Scholar
  8. 8.
    R. W. Keyes, Proc. IEEE 63 740 (1975).CrossRefGoogle Scholar
  9. 9.
    A. Asenov, Proc. SISPAD, 223 (1998).Google Scholar
  10. 10.
    K. R. Lakshmikumar, R. A. Hadaway, and M. A. Copeland, IEEE J. Solid State Circuits 21 1057 (1986).CrossRefGoogle Scholar
  11. 11.
    M. Steyaert, J. Bastos, R. Roovers, P. Kinget, W. Sansen, B. Graindourse, A. Pergot, and E. Janssens, Electron. Lett. 30 1546 (1994).CrossRefGoogle Scholar
  12. 12.
    J. T. Horstmann, U. Hilleringmann, and K. F. Goser, IEEE Trans. Electron. Dev. 45 299 (1997).CrossRefGoogle Scholar
  13. 13.
    K. Takeuchi, T. Tatsumi, and A. Furukawa, IEDM Tech. Dig. 841 (1997).Google Scholar
  14. 14.
    K. Nishiohara, N. Shiguo, and T. Wada, IEEE Trans. Electron. Dev. 39 634 (1992).CrossRefGoogle Scholar
  15. 15.
    P. A. Stolk, F. P. Widdershoven, and D. B. M. Klaassen, IEDM Tech. Dig. 627 (1996).Google Scholar
  16. 16.
    H.-S. Wong and Y. Taur, IEDM Tech. Dig. 705 (1993).Google Scholar
  17. 17.
    J. R. Zhou and D. K. Ferry, Proc. IWCE-3, Plenum Press, New York, p. 74 (1994).Google Scholar
  18. 18.
    A. Asenov, IEEE Trans. Electron. Dev. 45 2505 (1998).Google Scholar
  19. 19.
    D. Vasileska, W. J. Gross, and D. K. Ferry, Extended Abstracts, IWCE-6, IEEE Cat. No. 98EX116, p. 259 (1998).Google Scholar
  20. 20.
    B. Meinerzhagen and W. L. Engl, IEEE Trans. Electron Devices 35 689 (1988).CrossRefGoogle Scholar
  21. 21.
    G. H. Gilmer, L. Palaz, C. Rafferty and M. Jaraiz, Proc. SISPAD p. 46 (1998).Google Scholar
  22. 22.
    H. K. Gummel, IEEE Trans. Electron Devices 11 455 (1964).CrossRefGoogle Scholar
  23. 23.
    A. Asenov, J. R. Barker, A. R. Brown, and G. L. Lee, J Sim. Prac. and Theory 4 155 (1996).CrossRefGoogle Scholar
  24. 24.
    S. Selberherr, Analysis and simulation of semiconductor devices, Springer-Verlag, Vienna, 1984.CrossRefGoogle Scholar
  25. 25.
    A. Asenov, A. R. Brown, and S. Roy, Extended Abstracts IWCE-6, IEEE Cat. No. 98EX116, p. 58 (1998).Google Scholar
  26. 26.
    V. K. De, X. Tang, and D. J. Meindl, VLSI Symp. Tech. Dig. p. 198 (1996).Google Scholar
  27. 27.
    P. A. Stolk, F. P. Widdershoven, and D. B. M. Klaassen, IEEE Trans. Electron. Dev. 45 1960 (1998).CrossRefGoogle Scholar
  28. 28.
    A. Asenov, G. Slavcheva, A. R. Brown, J. H. Davies and S. Saini, IEDM Tech. Dig. 535 (1999).Google Scholar
  29. 29.
    S. Jallepalli, J. Bude, W.-K. Shih, M. R. Pinto, C. M. Maziar and A. F. Tasch, Jr., IEEE Trans. Electron. Dev. 44 297 (1997).CrossRefGoogle Scholar
  30. 30.
    K. S. Krisch, J. D. Bude, and L. Manchanda, IEEE Electron Device Lett. 17 512 (1996).CrossRefGoogle Scholar
  31. 31.
    M. G. Ancona and H. F. Tiersten, Phys. Rev. B 35 7959 (1987).CrossRefGoogle Scholar
  32. 32.
    M. G. Ancona and G. I. Iafrate, Phys. Rev. B 39 9536 (1989).CrossRefGoogle Scholar
  33. 33.
    M. G. Ancona, Z. Yu, R. W. Dutton, P. J. V. Voorde and M. Cao, Proc. SISPAD, p. 97 (1997).Google Scholar
  34. 34.
    C. S. Rafferty, B. Biegel, Z. Yu, M. G. Ancona, J. Bude, and R. W. Dutton, Proc. SISPAD, p. 137 (1998).Google Scholar
  35. 35.
    B. A. Biegel, C. S. Rafferty, Z. Yu, M. G. Ancona, R. W. Dutton, Proc. Gigascale Integration Technology Symposium, 35th Annual Technical Meeting, Pullman, USA, p. 53 (1998).Google Scholar
  36. 36.
    A. Asenov and S. Saini IEEE Trans. Electron Dev. 46 1718 (1999).CrossRefGoogle Scholar
  37. 37.
    K. Noda, T. Tatsumi, T. Uchida, K. Nakajima, H. Miyamoto, and C. Hu, IEEE Trans. Electron Devices 45 809 (1998).CrossRefGoogle Scholar
  38. 38.
    A. Asenov and S. Saini, IEEE Trans. Electron Devices 47 805 (2000).CrossRefGoogle Scholar
  39. 39.
    J. A. López-Villanueva, P. Cartujo-Casinello, J. Bankueri, F. Gamiz and S. Rodriguez, IEEE Trans. Electron Devices 44 1915 (1999).CrossRefGoogle Scholar
  40. 40.
    A. Asenov, R. Balasubramaniam, A. R. Brown and J. H. Davies, Superlat. Microstruc. 27, No. 5 /6, 411, (2000).Google Scholar
  41. 41.
    K. S. Rails, W. J. Skocpol, L. D. Jackel, R. E. Howard, L. A. Fetter, R. W. Epworth, and D. M. Tennant, Phys. Rev. Lett. 52 228 (1984).CrossRefGoogle Scholar
  42. 42.
    S. T. Martin, G. P. Li, E. Worley, and J. White, IEEE Electron Device Lett. 18 444 (1997).CrossRefGoogle Scholar
  43. 43.
    Y. Shi, H. M. Bu, X.L. Yuan, Y. D. Zheng, H. Ishikuro, H. Majima and T Hiramoto, Extended Abstracts, Silicon Nanoelectronics Workshop, Kyoto, p. 28 (1999).Google Scholar
  44. 44.
    E. Simoen, B. Dierick, C. L. Claeys, and G. J. Declerck, IEEE Trans. Electron Dev. 39 422 (1992).CrossRefGoogle Scholar
  45. 45.
    A. Godoy, F. Gamiz, A. Palma, J. A. Jimenez-Tejada, J. Banqueri and J. A. López-Villanueva, J. Appl. Phys. 82 4621 (1997).CrossRefGoogle Scholar
  46. 46.
    M.-H. Tsai and T.-P. Ma, IEEE Trans. Electron Devices 41 2061, 1994.CrossRefGoogle Scholar
  47. 47.
    M. J. Uren, D. J. Day and M. J. Kirton, App. Phys. Lett. 47 1195 (1985).CrossRefGoogle Scholar
  48. 48.
    A. Asenov, R. Balasubramaniam, A. R. Brown, J. H. Davies and S. Saini, IEDM Tech. Dig. 279 (2000).Google Scholar
  49. 49.
    SIA Roadmap, 1999 Edition, Lithography p. 147, http://public.itrs.net/Reports.htm Google Scholar
  50. 50.
    T. Ohmi, K. Kotani, A. Teramoto, and M. Miyashita, IEEE Electron Device Lett. 12 652, 1991.CrossRefGoogle Scholar
  51. 51.
    T. Yoshinobu, S. Iwamoto and H. Iwasaki, Jpn. J App. Phys. 33 383, 1994.CrossRefGoogle Scholar
  52. 52.
    S. M. Goodnick, D. Ferry, C. W. Wilmsen, Z. Liliental, D. Fathy, and O. L. Krivanek, Phys. Rev. B 32 8171 (1985).CrossRefGoogle Scholar
  53. 53.
    P. O. Hahn and M. Henzler, J. Vac. Sci. Tech. A 2 574 (1984).CrossRefGoogle Scholar
  54. 54.
    M. Niwa, T. Kozuaki, K. Okada, M. Udagawa, and R. Sinclair, Jpn. J App. Phys. 33 388 (1994).CrossRefGoogle Scholar
  55. 55.
    A. Pirovano, A. L. Lacaita, G. Ghidini, and G. Tallarida, IEEE Electron Device Lett. 21 34 (2000).CrossRefGoogle Scholar
  56. 56.
    A. Asenov, S. Kaya, J. H. Davies and S. Saini, Superlat. Microstruc. 28, No. 5 /6, p. 507 (2000).Google Scholar
  57. 57.
    A. Asenov and S. Kaya, Proc. SISPAD, p. 135 (2000).Google Scholar
  58. 58.
    T. Linton, Proc. IEEE Silicon Nanoelectronics Workshop, Kyoto, p. 82 (1999).Google Scholar
  59. 59.
    P. Oldiges, Q. Lin, K. Petrillo, M. Sanchez, M. Ieong and M. HargroveGoogle Scholar
  60. 60.
    T. Linton, VLSI Design - Proc. IWCE’7, in press.Google Scholar
  61. 61.
    S. Mori, T. Morisawa, N. Matsuzawa, Y. Kaimoto, M. Endo, T. Matsuo, K. Kuhara and M. Sasago, J. Vac. Sci. Tech. B 16 3739 (1998).CrossRefGoogle Scholar
  62. 62.
    S. Winkelmeier, M. Sarstedt, M. Goethals, M. Ercken and D. Laidler, Proc. SPIE, to be published.Google Scholar
  63. 63.
    G. F. Cardinale, C. C. Henderson, J. E. M. Goldsmith, P. J. S. Mangat, J. Cobb and S. D. Hector, J. Vac. Sci. Tech. B 17 2970 (1999).CrossRefGoogle Scholar
  64. 64.
    M. Yoshizawa and S. Moriya, Electronics Lett. 36 90 (2000).CrossRefGoogle Scholar
  65. 65.
    S. Kaya, A. R. Brown, A. Asenov, J H Davies and T. Linton, Proc. SISPAD, p. 78 (2001).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • A. Asenov
  • A. R. Brown
  • S. Kaya

There are no affiliations available

Personalised recommendations