Skip to main content

Antineoplastische Therapie

  • Chapter
Praktische Arzneitherapie
  • 42 Accesses

Zusammenfassung

Die Effektivität der Chemotherapie eines Tumors ist abhängig von dessen Wachstumsfraktion, d.h. dem im aktiven Zellzyklus befindlichen Anteil der Tumorzellen. Dies gilt insbesondere für zellzyklus-phasenspezifische Zytostatika wie z. B. die Antimetaboliten, die nur in der S-Phase wirksam werden können und die Spindelgifte in der M-Phase. Für diese Zytostatika besteht also eine temporäre Resistenz für den Anteil Tumorzellen, die sich derzeit nicht in der empfindlichen Phase befinden, die jedoch zu einem anderen Zeitpunkt in diese Zyklusphase rekrutiert werden können. Bei einigen Tumoren mit hoher Wachstumsrate ist daher heute die systemische Chemotherapie in kurativer Absicht einsetzbar, wie bei malignen Lymphomen und Leukämien, aber auch bei einigen soliden Tumoren. Da in diesen Fällen eine anderweitige Heilungschance nicht besteht, können schwerwiegende akute oder auch Langzeitnebenwirkungen in Kauf genommen werden. Die palliative Therapie hingegen zielt lediglich auf eine Besserung der Symptome ohne Heilungsaussichten der Erkrankung ab. Stark nebenwirkungsreiche Therapieschemata sind daher hierbei nicht gerechtfertigt. Zytostatika können nicht selektiv auf Tumorzellen wirken, da keine grundsätzlichen biochemischen Unterschiede zwischen Tumorzellen und normalen Zellen bestehen. Es ist

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Oki T, Takeuchi T, Oka S et al. (1980) Current status of Japanese studies with the new anthracycline antibiotic Aclacinomycin A. Recent Results Cancer Res 74: 207–216

    Article  PubMed  CAS  Google Scholar 

  2. Skovsgaard T (1987) Pharmacodynamic aspects of aclarubicin with special reference to daunorubicin and doxorubicin. Eur J Haematol (Suppl) 38: 7

    Article  Google Scholar 

  3. Mitrou PS (1983) Therapieergebnisse mit Aclacinomycin A bei rezidivierenden akuten Leukämien. Onkologie 6: 192–194

    Article  PubMed  CAS  Google Scholar 

  4. Tattersall NHM, Sodergren JE, Segupta IK et al. (1975) Pharmacokinetics of actinomycin D in patients with malignant melanoma. Clin Pharmacol Ther 17: 107–108

    Google Scholar 

  5. Pigram WJ, Fuller W, Amilton LDH (1972) Stereochemistry of intercalation: Interaction of daunorubicin with DNA. Nature 235: 17–9

    Google Scholar 

  6. Liu LF. Rowe TC, Young L et al. (1983) Cleavage of DNA by mammalian DNA topoisomerase-II. J Bio Chem 258: 15365–15370

    Google Scholar 

  7. Barlogie B, Smith L, Alexanian R (1984) Effective treatment of advanced multiple myeloma refractory to alkylating agents. N Engl J Med 310: 1353–1356

    Article  PubMed  CAS  Google Scholar 

  8. Benjamin RS (1974) Pharmacokinetics of adriamycin in patients with sarcomas. Cancer Chemother Res 58: 271–273

    CAS  Google Scholar 

  9. Lipton A, Sanrten RJ (1974) Medical adrenalectomy using aminoglutethimide and dexamethasone in advanced breast cancer. Cancer 33: 503–512

    Article  PubMed  CAS  Google Scholar 

  10. Thompson TA, Vermeulen JO. Wagner WE et al. (1981) Aminoglutethimide bioavailability, pharmacokinetics and binding to blood constituents. J Pharmaceut Sci 70:1040–1043

    Google Scholar 

  11. Bruning PF, Bonfrer JGM (1983) Aminoglutethimide and oral anticoagulant therapy. Lancet I: 582

    Google Scholar 

  12. Rowe TG, Chen GL, Hsiang YH et al. (1986) DNA damage by antitumor acridines mediated by mammalian DNA topoisomerase-II. Cancer Res 46: 2021–2026

    PubMed  CAS  Google Scholar 

  13. Hall SW, Friedman SS, Legha RS et al. (1983) Human pharmacokinetics of a new acridine derivate. Cancer Res 43: 3422

    PubMed  CAS  Google Scholar 

  14. Wong A: Hunag CH, Crooke ST (1984) Studies on the fluorescence–labelling of human red blood cell membrane ghosts with m-AMSA. Proc Am Assoc Cancer Res 25: 49

    Google Scholar 

  15. Yu DTY (1974) Lymphocyte characteristics in rheumatic patients and the effect of azathioprine therapy. Arthritis Rheum 17: 37–42

    Article  Google Scholar 

  16. Hersh EM, Wong VC, Freireich EJ (1966) Inhibition of the local inflammatory response in man by antimetabolites. Blood 27: 38–44

    PubMed  CAS  Google Scholar 

  17. Wu JC, Stubbe J, Kozarich JW (1985) Mechanism of bleomycin. Biochemistry 24: 7569–7573

    Article  PubMed  CAS  Google Scholar 

  18. Alberts DS, Chen HSG, Liu R et al. (1978) Bleomycin pharmacokinetics in man. 1. Intravenous administration. Cancer Chemother Pharmacol 1: 177–181

    Article  PubMed  CAS  Google Scholar 

  19. Ostrowski MJ (1989) Intracavitary therapy with bleomycin for the treatment of malignant pleural effusions. J Surg Oncol Suppl 1: 7–13

    Article  PubMed  CAS  Google Scholar 

  20. Hehlmann R, Heimpel H, Hasford J et al. (1993) Randomized comparison of busulfan and hydroxyurea in chronic myelogenous leukemia: prolongation of survival by hydroxyurea. Blood 82: 398–407

    PubMed  CAS  Google Scholar 

  21. Ehrsson H, Hassan M, Ehrnebo M et al. (1983) Busulfan kinetics. Clin Pharmacol, Ther 34: 86–90

    CAS  Google Scholar 

  22. Pode D, Pireberg S, Steiner D (1983) Busulfan-induced hemorrhagic cystitis. J Urol 130: 347

    PubMed  CAS  Google Scholar 

  23. von Hoff DD (1987) Whither carbaplatin? A replacement for or an alternative to cisplatin. J Clin Oncol 5: 169–170

    Google Scholar 

  24. Muggia FM (1989) Overview of carboplatin: replacement, complementing and extending the therapeutic horizons of cisplatin. Semin Oncol 15: 7–13

    Google Scholar 

  25. De Vita VT (1965) Clinical trials with 1,3-bis(2-chloroethyl)-1-nitrosourea, NSC-409962. Cancer Res 25: 1876–1881

    PubMed  Google Scholar 

  26. Wassermann TH, Slavik M. Carter SK (1975) Clinical comparison of the nitrosoureas. Cancer 36: 1258–1268

    Google Scholar 

  27. Weinstein AS, Diener-West SM, Nelson DF et al. (1986) Pulmonary toxicity of carmustine in patients treated for malignant gliomas. Cancer Treat Rep 70: 943–946

    PubMed  CAS  Google Scholar 

  28. Byrne TN, Moseley TAE, Finer MA (1981) Myoclonic seizures following chlorambucil overdose. Ann Neurol 9: 191–193

    Article  PubMed  Google Scholar 

  29. Lane SD, Besa EC, Justh G et al. (1981) Fatal interstitial pneumonitis following high-dose intermittent chlorambucil therapy for chronic lymphocytic leukemia. Cancer 47: 32–36

    Article  PubMed  CAS  Google Scholar 

  30. Ducore JM, Erickson LC, Zwelling LA et al. (1982) Comparative studies of DNA-cross linking and cytotoxicity in Burkitt lymphoma cell lines treated with cisdiamine-dichloro-platinum ( II) and L-phenylalanine mustard. Cancer Res 4: 897

    Google Scholar 

  31. Drewinko B, Patchen M, Yang LY et al. (1981) Differential killing efficacy of twenty antitumor drugs on proliferating and non-proliferating human tumor cells. Cancer Res 41: 2328–2333

    PubMed  CAS  Google Scholar 

  32. Brock N (1971) Activation of cyclophosphamide in man and animal. Cancer 6: 1512–1529

    Article  Google Scholar 

  33. Sladek NIE, Powers JF, Grage GM (1984) Half-life of oxazaphosphorines in biological fluids. Drug Metabol Dispos 12: 553–559

    CAS  Google Scholar 

  34. Juma FD (1984) Effect of liver failure on the pharmacokinetics of cyclophosphamide. Eur J Clin Pharmacol 26: 591–593

    Article  PubMed  CAS  Google Scholar 

  35. Manohoran A (1984) Carcinoma of the urinary bladder in patients receiving cyclophosphamide. Aust NZ J Med 14: 507–512

    Article  Google Scholar 

  36. Steinherz JJ, Steinherz PG (1985) Cyclophosphamide cardiotoxicity. Cancer Bull 37: 231–234

    Google Scholar 

  37. Alvarado CS. Boat TF, Newman AJ (1978) Late onset pulmonary fibrosis and chest deformity in two children treated with cyclophosphamide. J Pediatr 92: 443–446

    Google Scholar 

  38. Neumann F, Töpert M (1986) Pharmacology of antiandrogens. J Steroid Biochem 25: 885–895

    Article  PubMed  CAS  Google Scholar 

  39. Brown TR, Rothwell SW, Sulktan C et al. (1981) Inhibition of androgen binding in human foreskin fibroblasts by antiandrogens. Steroids 37: 635–648

    Article  PubMed  CAS  Google Scholar 

  40. Tvetter KJ, Otnes B, Hamnestad R (1978) Treatment of prostate cancer with cyproteroneacetate. Scand J Urol Nephrol 12: 115

    Article  Google Scholar 

  41. Ho DHW, Frei E (1971) Clinical pharmacology of 1-ß-D-arabinofuranosylcytosine. Clin Pharmacol Ther 12: 944 - 954

    PubMed  CAS  Google Scholar 

  42. Ritch PS (1983) Ocular toxicity from high dose cytosine arabinoside. Cancer 51: 430–432

    Article  PubMed  CAS  Google Scholar 

  43. Lazarus HM (1981) Central nervous system toxicity of high dose systemic cytosine arabinoside. Cancer 48: 2577

    Article  PubMed  CAS  Google Scholar 

  44. Bono VH (1976) Studies on the mechanism of DTIC. Cancer Treat Rep 60: 141–148

    PubMed  CAS  Google Scholar 

  45. Breithaupt H, Damann A, Aigner K (1982) Pharmacokinetics of DTIC and its metabolite 5-aminoimidazole-4-carboxamide, following different dose schedules. Cancer Chemother Pharmacol 9: 103–109

    Article  PubMed  CAS  Google Scholar 

  46. Feaux de Lacroix W, Runne U, Hauk H et al. (1983) Acute liver dystrophy with thrombosis of hepatic veins: a fatal complication of dacarbazine treatment. Cancer Treat Rep 67: 779–782

    PubMed  CAS  Google Scholar 

  47. Tewey KM, Chen GL, Nelson EM et al. (1984) Intercalation antitumor drugs interfere with the breakage-reunion reaction mammalian DNA topoisomerase II. J Biol Chem 259: 9182–9187

    PubMed  CAS  Google Scholar 

  48. Büchner T, Hiddemann W, Königsmann M et al. (1991) Recombinant human granulocyte-macrophage colony-stimulating factor alter chemotherapy in patients with acute myeloid leukemia at higher age or relapse. Blood 78: 1190–1197

    PubMed  Google Scholar 

  49. Hoelzer D (1991) High-dose chemotherapy in adult acute lymphoblastic leukemia. Semin Hematol 28 (Suppl 4): 84

    PubMed  CAS  Google Scholar 

  50. Jain KK, Caspers ES, Geller NL (1985) A prospective randomized comparison of epirubicin and doxorubicin in patients with advanced breast cancer. J Clin Oncol 3: 818

    PubMed  CAS  Google Scholar 

  51. Torti FM, Bristow MM, Lum BL (1986) Cardiotoxicity of epirubicin and doxorubicin: assessment by endomyocardial biopsy. Cancer Res 46: 3722

    PubMed  CAS  Google Scholar 

  52. Hauser AR, Marryman R (1984) Estramustin phosphate sodium. Drug Intell Clin Pharmacol 18: 368–374

    CAS  Google Scholar 

  53. Haim N, Roman J, Nemec J et al. (1986) Peroxidative free radical formation and o-demethylation of etoposide (VP-16) and teniposide (VM-26), Biochem Biophys Res Commun 135: 215–220

    Article  PubMed  CAS  Google Scholar 

  54. Allen LM, Creaven PJ (1975) Comparison of the human pharmacokinetics of VM-26 and VP-16, two antineoplastic epipodophyllotoxin glucopyranoside derivatives. Eur J Cancer 11: 697–707

    PubMed  CAS  Google Scholar 

  55. Radice PA, Bunn PA, Ihde DC (1979) therapeutic trials with VP 162131 and VM 26: active agents in small cell lung cancer, non Hodgkin’s lymphomas and other malignancies. Cancer Treat Rep 63: 1231–1239

    Google Scholar 

  56. Dwyer PJ, Leyland-Jones B, Alonso MT (1985) Drug therapy: Etoposide (VP 16-213): Current status of an active anticancer drug. N Engl J Med 312: 692–700

    Google Scholar 

  57. Redman JR, Cabanillas F, Velasquez WS et al. (1992) Phase 11 Trial of fludarabine phosphate in lymphoma: an effective new agent in low-grade lymphoma. J Clin Oncol 10: 790–794

    PubMed  CAS  Google Scholar 

  58. Chun HG, Leyland-Jones BR, Cary KSM et al. (1986) Central nervous system toxicity of fludarabine phosphate. Cancer Treat Rep 70: 1225–1288

    PubMed  CAS  Google Scholar 

  59. Heidelberger C, Chandhari NK, Daunenberg P et al. (1957) Fluorinated pyrimidines: a new class of tumor inhibitory compounds. Nature 179: 663–666

    Article  PubMed  CAS  Google Scholar 

  60. Lokich JJ, Ahlgren JD, Guilo JJ et al. (1989) A prospective randomized comparison of continuous infusion. Fluorouracil with a conventional bolus schedule in metastatic colorectal carcinoma. A Mid-Atlantic Oncology Program Study. J Clin Oncol 4: 425–432

    Google Scholar 

  61. Poon M, O’Connel MJ, Moertel CG (1989) Biochemical modulation of fluorouracil: Evidence of significant improvement of survical and quality of life in patients with advanced colorectal carcinoma. J Clin Oncol 10: 1407–1418

    Google Scholar 

  62. Knuth HA, Hano R, Nieschlag E (1984) Effect of flutamide or cyproterone acetate on pituitary and testicular hormones in normal men. J Clin Endocrinol Metab 59: 963–969

    Article  PubMed  CAS  Google Scholar 

  63. Geller J, Albert J, Vik A (1988) Advantages of total androgen blockade in the treatment of advanced prostatic cancer. Semin Oncol 15 (Suppl. 1): 53–61

    PubMed  CAS  Google Scholar 

  64. Lord BI, Bronchud MH, Owens S et al. (1989) The kinetic of human granulopoiesis following treatment with colony-stimulating factor in vivo. Proc Natl Acad Sci USA 86: 9499–9503

    Article  PubMed  CAS  Google Scholar 

  65. Welte K, Zeidler C, Reiter A et al. (1990) Differential effects of granulocyte-macrophage colony-stimulating factor and granulocyte colony-stimulating factor in children with severe congenital neutropenia. Blood 75: 1056–1063

    PubMed  CAS  Google Scholar 

  66. Layton JE, Hockman H, Sheridan WP et al. (1989) Evidence of a novel in vivo control mechanism of granulopoesis: mature cell-related control of a regular growth factor. Blood 74: 1303–1307

    PubMed  CAS  Google Scholar 

  67. Lieschke GJ, Burgess AW (1992) Granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor. N Engl J Med 327: 28–35

    Article  PubMed  CAS  Google Scholar 

  68. Ohno R, Tomonaga M, Kobayashi HM et al. (1990) Effect of granulocyte colony-stimulating factor after intensive induction therapy in relapsed or refractory acute leukemia. N Eng J Med 323: 871–877

    Article  CAS  Google Scholar 

  69. Heinemann V, Schulz L, Issels RD, Plunkett W (1995) Gemcitabine: a modulator of intracellular nucleotide and deoxynucleotide metabolism. Sem Oncol 22: 11–19

    CAS  Google Scholar 

  70. Büchner T, Hiddemann W, Königsmann M et al. (1991) Recombinant human granulocyte-macrophage colony-stimulating factor after chemotherapy in patients with acute myeloid leukemia at higher age or relapse. Blood 78: 1190–1197

    PubMed  Google Scholar 

  71. Cebon J, Dempsey P, Fox R et al. (1988) Pharmacokinetics of human granulocyte-macrophage colony-stimulating factor using a sensitive immunoassay. Blood 72: 1340–1347

    PubMed  CAS  Google Scholar 

  72. Berman E, Heller G, Gantorsa J et al. (1991) Results of a randomized trial comparing idarubicin and cytosine arabinoside with daunorubicin and cytosine arabinoside in adult patients with newly diagnosed acute myelogenous leukemia. Blood 77: 1666–1674

    PubMed  CAS  Google Scholar 

  73. Reid JM, Pendergrass W, Krailo MD et al. (1990) Plasma pharmacokinetics and cerebrospinal fluid concentrations of idarubicin and idarubicinol in pediatric leukemia patients: a children’s cancer study group report. Cancer Res 50: 6525–6528

    PubMed  CAS  Google Scholar 

  74. Allen LM (1976) Studies on the human pharmacokinetics of ifosfamide (NSC-109724). Cancer Treat Rep 60: 451–458

    PubMed  CAS  Google Scholar 

  75. Andriole GL, Sandlund JT, Miser JS et al. (1987) The efficacy of MESNA (2-mercaptoethane-sodium sulfonate) as a uroprotectant in patients with hemorrhagic cystitis receiving further oxazaphospharine chemotherapy. J Clin Oncol 5: 799–803

    PubMed  CAS  Google Scholar 

  76. Wheeler BM (1986) Ifosfamide in refractory male germ cell tumors. J Clin Oncol 4: 28–34

    PubMed  CAS  Google Scholar 

  77. Gutterman JU, Fine S, Quesida JR et al. (1982) Recombinant leukocyte A interferon: pharmacokinetics, single-dose tolerance and biologic effects in cancer patients. Arm Intern Med 96: 549–556

    Article  CAS  Google Scholar 

  78. von Wussow P, Freund M, Block B et al. (1987) Clinical significance of anti-IFN-alpha antibody titres during interferon therapy. Lancet ii: 635636

    Google Scholar 

  79. von Wussow P, Jakschies O, Freund M et al. (1991) Treatment of anti-recombinant interferon-alpha 2 antibody positive CML patients with natural interferon-alpha. Brit J Haematol 78: 210–216

    Article  CAS  Google Scholar 

  80. Rothenberg ML (1998) Topoisomerase I inhibitors: Review and update. Ann Oncol 8: 837–855

    Article  Google Scholar 

  81. Ohnuma T, Holland JF, Meyer P (1972) Erwinia carotovora asparaginase in patients with prior anaphylaxis to asparaginase from E. coli. Cancer 30: 376–381

    CAS  Google Scholar 

  82. Homans AC, Rybah ME, Baglini RL et al. (1987) Effect of L-asparaginase administration on coagulation and platelet function in children with leukemia. J Clin Oncol 5: 811–817

    PubMed  CAS  Google Scholar 

  83. Capizzi R (1975) Improvement in the therapeutic index of L-asparaginase by methotrexate. Cancer Chemother Rep 6: 37–41

    CAS  Google Scholar 

  84. Waxman Jh, Wass JAH, Henry HN (1983) Treatment with gonadotropin releasing hormone analogue in advanced prostatic cancer. Brit Med J 286: 1309–1312

    Article  CAS  Google Scholar 

  85. Sandow J, Clayton RN (1983) The disposition, metabolism, kinetics and receptor binding properties of LHRH and its analogues. Prog Horm Biochem Pharmacol 2: 63–106

    CAS  Google Scholar 

  86. Smith KH (1988) Interleukin-2: Inception, impact and implications. Science 240: 1169–1175

    Article  PubMed  CAS  Google Scholar 

  87. Whittington R, Faulds D (1993) Interleukin-2. A review of its pharmacological properties and therapeutic use in patients with cancer. Drugs 46: 446–514

    Google Scholar 

  88. Rosenstein M, Ettinghausen SE, Rosenberg SA (1986) Extravasation of intravascular fluid mediated by the systemic administration of recombinant interleukin-2. J Immunol 137: 1735–1742

    PubMed  CAS  Google Scholar 

  89. Sponzo RW (1973) Physiologic disposition of 1-(2-chloroethyl-)-3-(4methyl cyclohexyl)-1-nitrosourea (MeCCNU) in man. Cancer 31: 11541159

    Google Scholar 

  90. Cordonnier C, Vernant JP, Mital P et al. (1983) Pulmonary fibrosis subsequent to high dosis of CCNU for OML. Cancer 51: 1814–1818

    Article  PubMed  CAS  Google Scholar 

  91. Zeltzer PM, Feig SA (1979) Theophylline-induced lomustine toxicity. Lancet 2: 960–961

    Article  PubMed  CAS  Google Scholar 

  92. Alberts DS, Chen HS, Benz D et al. (1981) Effect of renal dysfunction in dogs on the disposition and marrow toxicity of melphalan. Brit J Cancer 43: 330–335

    Article  PubMed  CAS  Google Scholar 

  93. Perry MC (1982) Hepatotoxicity of chemotherapeutic agents. Semin Oncol 9: 65–74

    PubMed  CAS  Google Scholar 

  94. Sauer H, Schalhorn A (1980) Rationale Grundlagen und Praxis des Citrovorumfaktor ( Leukovorin)-Schutzes nach hochdosierter Methotrexattherapie, Onkologie 3: 84–91

    Google Scholar 

  95. Jolivet J, Cowar KH, Curt L et al. (1983) The pharmacology and clinical use of methotrexate. N Engl J Med 309: 1094–1114

    Article  PubMed  CAS  Google Scholar 

  96. Kotz R, Leber H, Ramach W et al. (1977) Erfahrungen mit der Durchführung der hochdosierten Methotrexatbehandlung beim Osteosarkom. Wien Klin Wochenschr 89: 474–479

    PubMed  CAS  Google Scholar 

  97. Evans WE, Pratt CB (1978) Effect of pleural effusion an high-dose methotrexate kinetics. Clin Pharmacol Ther 23: 68–72

    PubMed  CAS  Google Scholar 

  98. Überall F, Oberhuber H, Maly K et al. (1991) Hexadecylphosphocholine inhibits inositol phosphate formation and protein kinase C activity. Cancer Res 51: 807–812

    PubMed  Google Scholar 

  99. Gaafar R, Hamza MR, Gad el Mawla N (1992) Hexadecylphosphocholine in the topical treatment of skin metastasized breast cancer. J Egypt Nat Cancer Inst 5: 585–594

    Google Scholar 

  100. Traganos F (1983) Dihydroxyanthraquinone and related bis (substituted) aminoanthraquinones: a novel class of antitumor agents. Pharmacol Ther 22: 199–214

    Article  PubMed  CAS  Google Scholar 

  101. Musch E, Paar WD, Hoffmann B et al. (1989) Intrapleurale Instillation von Mitoxantron zur Palliativ-Therapie maligner Pleuraergüsse. Tumor Diagn Ther 10: 1–8

    Google Scholar 

  102. Kaufmann M, Schmid H, Kubli F (1988) Intraperitoneale MitoxantronApplikalion beim progredienten Ovarialkarzinom mit Aszitesbildung. In: Seeber S, Aigner KR, Enghofer E (Hrsg) Die lokoregionale Tumortherapie. de Gruyter, Berlin, S 61–70

    Google Scholar 

  103. Ehninger G, Weible KH, Heidemann E et al. (1984) Mitoxantrone in combination with cyclophsophamide in patients with advanced breast cancer. Cancer Treat Rep 68: 1283–1284

    PubMed  CAS  Google Scholar 

  104. Rowinsky EK, Onetto N, Cantetta RM et al. (1992) Taxol: the first of the taxanes, an important new class o17 antitumor agents Semin On-col 19: 642–662

    Google Scholar 

  105. Schalhorn B (1993) Paclitaxel (Taxol) - ein Zytostatikum mit neuartigem Wirkmechanismus. Med Klin 88 (Suppl. 11): 4–15

    Google Scholar 

  106. Argawal RP (1982) Inhibitors of adenosine deaminase. Pharmacol Ther 17: 399–429

    Article  Google Scholar 

  107. Hoffmann W, Seeber S (1991) Stellenwert von Prednimustin in der Behandlung fortgeschrittener Mammacarcinome und maligner Lymphome höher Stadien. Tumordiag Ther 12: 65–70

    Google Scholar 

  108. Spivack BB (1974) Procarbazine. Ann Intern Med 81: 795–800

    Article  CAS  Google Scholar 

  109. Andersen E, Videbaek A (1980) Procarbazine-induced skin reactions in Hodgkin’s disease and other malignant lymphomas. Scand J Haematol 24: 149–151

    Article  PubMed  CAS  Google Scholar 

  110. Edward DT, Chamoess GC, McGuire WL (1979) Estrogene and progesterone receptor proteins in breast cancer. Biochem Biophys Acta 560: 457–459

    Google Scholar 

  111. Mouridsen H, Palskof T, Patterson J et al. (1978) Tamoxifen in advanced breast cancer. Cancer Treat Rev 5: 131–138

    Article  PubMed  CAS  Google Scholar 

  112. Allen LM, Creaven PJ (1975) Comparison of human pharmacokinetics of VM-26 and VP-1 6, two antineoplastic epipodophyllotoxin glycopyranoside derivatives. Eur J Cancer 11: 697–707

    PubMed  CAS  Google Scholar 

  113. von Pawel J (1997) Topotecan: Potent cytostatic action by selective topoisomerase I inhibition. Onkologie 20: 380–386

    Article  Google Scholar 

  114. Cole DE, Blaney SM, Balis M (1995) Topotecan in physiologic fluids: Depot of active drugs in red blood cells. Proc Am Assoc Cancer Res 36: 363–366

    Google Scholar 

  115. Owelien RJ, Root MA, Hains FO (1977) Pharmacokinetics of vindesine and vincristine in humans. Cancer Res 37: 2603–2607

    Google Scholar 

  116. Femoleau P, Degado FM, Delozier T (1993) Phase-II-trial of weekly intravenous vinorelbine in first-line advanced breast cancer chemotherapy. J Clin Oncol 11: 1245–1252

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zurborn, KH. (2000). Antineoplastische Therapie. In: Frölich, J.C., Kirch, W. (eds) Praktische Arzneitherapie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09398-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09398-6_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66071-2

  • Online ISBN: 978-3-662-09398-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics