Skip to main content

Therapie des Diabetes mellitus

  • Chapter
Praktische Arzneitherapie
  • 42 Accesses

Zusammenfassung

Dem Diabetes liegen Defekte in der Synthese, Sekretion und/oder Wirkung von Insulin zugrunde. Dies kann auf einer Zerstörung der ß-Zellen des Pankreas durch Autoimmunprozesse (Typ 1) oder einer verminderten Insulinempfindlichkeit in Verbindung mit einer gestörten Insulinsekretion der ß-Zelle (Typ 2) beruhen. Ziel der Therapie ist es, durch Substitution des absoluten Insulinmangels und Verbesserung der Insulinwirkung die konsekutiven Störungen im Kohlenhydrat-, Eiweiß-, Fett- und Mineralstoffwechsel so weit als möglich zu normalisieren, um dem Diabetiker als bedingt Gesundem ein normales Leben in Familie, Beruf und Gesellschaft zu ermöglichen. Kurzfristig sollen ketoazidotische Entgleisungen, Infektionen und Hypoglykämien vermieden werden, langfristig gilt es die Spätkomplikationen (Makroangiopathie; Mikroangiopathie: Retinopathie, Nephropathie, diabetischer Fuß; Neuropathie) zu verhindern (primäre Prävention). Es gibt heute umfangreiche Daten aus epidemiologischen Studien, die nachweisen, dass die diabetesspezifischen Spätkomplikationen von der Qualität der Diabeteseinstellung, gemessen an HbA1C und Blutglukose [1, 2], und die Makroangiopathie von der Kontrolle assoziierter Risikofaktoren (wie Hypertonie [3] und Dyslipoproteinämie [4, 5]) abhängen. Davon ausgehend hat die Amerikanische Diabetesgesellschaft Zielgrößen definiert (Tabelle 17.1; [6]), die nach Möglichkeit bis in das Alter angestrebt werden sollen, da auch im hohen Alter die Lebensqualität noch wesentlich von der Diabeteseinstellung abhängt. Wie die Ergebnisse mehrerer Studien [1, 2, 4, 5] zeigen, kann nur durch eine strikte Euglykämisierung und Optimierung der LDL-Cholesterinwerte sowie des Blutdrucks eine Verbesserung der Prognose der Typ-2-Diabetiker erreicht werden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Hanefeld M, Fischer S, Julius U et al. (1996) The DIS-Group: Risk factors for myocardial infarction and death in newly detected in NIDDM: the Diabetes Intervention Study, 11 year follow-up. Diabetologia 39: 1577–1583

    Article  PubMed  CAS  Google Scholar 

  2. Intensive blood glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes. (UKPDS 33) (1998). Lancet 352: 837–853

    Google Scholar 

  3. Tight blood pressure control and risk of macrovascular and mikrovascular complications in type 2 diabetes: UKPDS 38. UK Prospective Diabetes Study Group (1998). BMJ 317: 703–713

    Google Scholar 

  4. Pyörälä K, Pedersen TR, Kjekshus J et al. (1997) The Scandinavian Simvastatin Survival Study (45) Group. Cholesterol lowering with simvastatin improves prognosis of diabetic patients with coronary heart disease. Diabetes Care 4: 614–620

    Google Scholar 

  5. Goldberg RB, Mellies MJ, Sacks FM, et al. for the care investigators (1998) Cardiovascular events and their reduction with pravastatin in diabetic and glucose intolerance myocardial infarction survivors with average cholesterol levels, subgroup analysis in the cholesterol and re-crurent events ( Care) trial. Circulation 98: 2513–2519

    Google Scholar 

  6. Standards of medical care for patients with diabetes mellitus. American Diabetes Association (1999). Diabetes Care (Suppl 1)22:S32–S41

    Google Scholar 

  7. Simpoon KL, Spencer CM (1999) Insulin Aspart. Drugs 57: 759–765

    Google Scholar 

  8. Seipke G, Geisen K, Neubauer HP et al. (1992) New insulin preparations with prolonged action profiles A 21 - modified arginine insulins. Diabetologia (Suppl 1 ): A6

    Google Scholar 

  9. Rosak C, Böhm BO, Schöffling K (1994) Behandlung mit Insulin. In: Mehnert H, Schöffling K, Standl E, Usadel K-H (Hrsg) Diabetologie in Klinik and Praxis. Thieme, Stuttgart, pp 246–272

    Google Scholar 

  10. Anderson JH, Brunelle RL, Keohane P et al. (1997) Mealtime treatment with insulin analog improves postprandial hyperglycemia and hypoglycemia in patients with non-insulin dependent diabetes mellitus. Arch Intern Med 157: 1249–1255

    Article  PubMed  CAS  Google Scholar 

  11. Anderson J, Campbell R (1990) Mixing insulin in 1990. Diab Educ 16: 380–387

    Article  CAS  Google Scholar 

  12. Rabkin R (1970) Effect of renal disease on renal uptake and excretion of insulin in man. N Engl J Med 282: 181–187

    Article  Google Scholar 

  13. Alberti KGMM, Natrass M (1978) Severe diabetic ketoacidosis. Med Clin North Am 62: 799–814

    PubMed  CAS  Google Scholar 

  14. Schulze J, Rietzsch H (1995) Insulin therapy. In: Hanefeld M (ed) A practical guide to the therapy of type II diabetes. Pathophysiology, metabolic syndrome, differential therapy, late complications. de Gruyter, Berlin, pp 160–168

    Google Scholar 

  15. Morley JE, Perry HM III (1991) The management of diabetes mellitus in older individuals. Drugs 41: 548–565

    Article  PubMed  CAS  Google Scholar 

  16. Pickup JC (1991) Continuous subcutaneous insulin infusion (CSII). In: Pickup J, Williams G (eds) Textbook of diabetes. Blackwell Scientific Publ Oxford, pp 416–426

    Google Scholar 

  17. Grenfell A (1991) Clinical features and management of established diabetic nephropathy. In: Pickup J, Williams G (eds) Textbook of diabetes. Blackwell Scientific Publ Oxford, S 677–700

    Google Scholar 

  18. Koivisto VA (1991) Exercise and diabetes mellitus. In: Pickup J, Williams G (eds) Textbook of diabetes. Blackwell Scientific Publ Oxford, pp 795–802

    Google Scholar 

  19. Lowy C (1991) Pregnancy and diabetes mellitus. In: Pickup J, Williams G (eds) Textbook of diabetes. Blackwell Scientific Publ Oxford, pp 835–850

    Google Scholar 

  20. Morley JE, Kaiser FK (1990) Unique aspects of diabetes mellitus in the elderly. Clin Ger Med 6: 693–702

    CAS  Google Scholar 

  21. Chalmers J, Risk MTA, Kean DM et al. (1991) Severe amnesia after hypoglycemia. Diabetes Care 14: 922–925

    Article  PubMed  CAS  Google Scholar 

  22. Patrick AW, Campbell IW (1990) Fatal hypoglycemia in insulin treated diabetes mellitus. Clinical features and neuropathological changes. Diab Med 7: 349–354

    Google Scholar 

  23. Kalimo H, Olsson Y (1980) Effect of severe hypoglycemia on the human brain. Acta Neurol Scandinav 62: 245–356

    Article  Google Scholar 

  24. Auer RN (1986) Progress review: Hypoglycemic brain damage. Stroke 17: 699–708

    Article  PubMed  CAS  Google Scholar 

  25. Frier BM, Hilsted J (1985) Does hypoglycemia aggravate the complications of diabetes? Lancet 2: 1175–1177

    Article  PubMed  CAS  Google Scholar 

  26. Ryan CM, Williams TM, Finegold DN, Orchard TJ (1993) Cognitive dysfunction in adults with type I diabetes mellitus of long duration: effects of recurrent hypoglycemia and other chronic complications. Diabetologia 36: 329–334

    Article  PubMed  CAS  Google Scholar 

  27. Berger M (1987) Humaninsulin. Much ado about hypoglycemia (un) awareness. Diabetologia 30: 829–833

    Article  PubMed  CAS  Google Scholar 

  28. Althoff PH, Mehnert H (1994) Akute Komplikationen: Hypoglykämie, Koma, Laktazidose, alkoholische Ketoazidose. In: Mehnert H, Schöffling K, Standl E, Usadel KH (Hrsg) Diabetologie in Klinik und Praxis. Thieme, Stuttgart New York, pp 363–402

    Google Scholar 

  29. Nathan DI (1988) Management of insulin-dependent diabetes mellitus. Med Clin North Am 72: 1365–1374

    PubMed  CAS  Google Scholar 

  30. Berne C, Pollare T, Lithe11 H (1991) Effects of antihypertensive treatment on insulin sensitivity with special reference to ACE inhibitors. Diabetes Care (Suppl. 4 ); 14: 39–47

    Google Scholar 

  31. Management of dyslipidemia in adults with diabetes. American Diabetes Association. Diabetes Care 1999; (Suppl. 1); 22: 56–59

    Google Scholar 

  32. Diabetic Nephropathy. American Diabetes Association (1999). Diabetes Care 22 (Suppl 1): 66–69

    Google Scholar 

  33. Chantelau E, Spraul M, Schmid M (1989) Das Syndrom des diabetischen Fusses. Dtsch Med Wschr 114: 1034–1039

    Article  PubMed  CAS  Google Scholar 

  34. Caspary WF (1985) Diabetes mellitus: Verzögerung der Kohlenhydrat-resorption als therapeutisches Prinzip. Dtsch Ärztebl 82: 1413–1423

    Google Scholar 

  35. Puls W, Keup U, Krause HP, Thomas G (1977) Glucosidase inhibition; a new approach to the treatment of carbohydrate dependent metabolic disorders. Diabetologia 13: 426

    Google Scholar 

  36. Foelsch UR, Ebert R, Creutzfeldt W (1981) Response of serum levels of gastric inhibitory polypeptide and insulin to sucrose ingestion during long-term application of acarbose. Scand J Gastroenterol 16: 629–632

    Article  CAS  Google Scholar 

  37. Puls W, Bischoff H (1988) The pharmacological rationale of diabetes mellitus therapy with acarbose. In: Creutzfeldt W (ed) Acarbose for the treatment of diabetes mellitus. Springer, Berlin, pp 29–38

    Chapter  Google Scholar 

  38. Hotta N, Kakuta H (1993) Long-term effect of acarbose on glycemic control in non-insulin dependent diabetes mellitus: A placebo-controlled double-blind study. Diab Med 10: 134–138

    Google Scholar 

  39. Hanefeld M, Fischer S, Schulze J et al. (1991) Therapeutic potentials of acarbose as first-line drug in NIDDM insufficiently treated with diet alone. Diabetes Care 14: 732–737

    Article  PubMed  CAS  Google Scholar 

  40. Dimitriadis GD, Tessari P, Gerich JE (1985) Alpha-glucosidase inhibition improves postprandial hyperglycemia and decreases insulin requirements in insulin-dependent diabetes mellitus. Metabolism 34: 261265

    Google Scholar 

  41. Hanefeld M (1993) Medikamentöse Differentialtherapie. In: Hanefeld M (Hrsg) Praxis der Therapie des Typ-2-Diabetes. Pathophysiologische Grundlagen, metabolisches Syndrom, Differentialtherapie, Komplikationen. de Gruyter, Berlin, pp 180–184

    Google Scholar 

  42. Müller FO, Hillebrand I (1986) Acarbose (BAYg5421) kinetics in healthy volunteers. Acta Pharmacol Toxicol 59: 303

    Google Scholar 

  43. Putter J (1980) Studies on the pharmacokinetics of acarbose in humans. In: Brodbeck U (ed) Enzyme inhibitors. Verlag Chemie, Weinheim, pp 139–151

    Google Scholar 

  44. Putter J (1981) Pharmacokinetics of acarbose. In: Creutzfeldt W (ed). Proceedings of the first International Symposium on acarbose. Montreux, pp 38–48

    Google Scholar 

  45. Chiasson JL, Josse RG, Hunt JA et al. (1994) The efficacy of acarbose in the treatment of patients with non-insulin-dependent diabetes mellitus. Ann Intern Med 121: 928–935

    Article  PubMed  CAS  Google Scholar 

  46. Rybka J, Gregorova A, Zymdlena A, Jaron P (1990) Klinische Studie mit Acarbose. Drug Invest 2: 264–267

    Article  Google Scholar 

  47. Hanefeld M (1993) Alpha-Glucosidase Inhibitoren. In: Hanefeld M (Hrsg) Praxis der Therapie des Typ-II-Diabetes. Pathophysiologische Grundlagen, metabolisches Syndrom, Differentialtherapie, Komplikationen. de Gruyter, Berlin, pp 137–144

    Google Scholar 

  48. Lebovitz HE (1992) Oral antidiabetic agents. The emergence of alphaglucosidase inhibitors. Drugs 44: 21–28

    Article  PubMed  Google Scholar 

  49. Fischer S, Hanefeld M, Spengler M, Böhme K, Temelkova-Kurktschiev T (1998) European study on dose response relationship of acarbose as a first line drug in non insulin dependent diabetes mellitus: efficacy and safety of low and high doses. Acta Diabetol 35: 34–40

    Article  PubMed  CAS  Google Scholar 

  50. Spengler M, Cagatay M (1992) Evaluation of efficacy and tolerability of acarbose by postmarketing surveillance. Diab Stoffw 1: 218–222

    Google Scholar 

  51. William-Olsson (1985) Effects of acarbose after weight reduction in severely obese subjects. J Obes Weight Reg 4: 20–32

    Google Scholar 

  52. Gerard J, Lefébvre PJ, Luyckx AS (1984) Glibenclamide pharmacokinetics in acarbose treated type 2 diabetics. Eur J Clin Pharmacol 27: 233–236

    Article  PubMed  CAS  Google Scholar 

  53. Coniff RF, Johnston PS, Krol A, Westhaven CT (1996) Long-term effects of the alpha-glucosidase inhibitor miglitol (BAY m 1099) in NIDDM patients treated with, aximal-dose sulphonylurea (SFU). Diabetes 45 (Suppl 2):A 221

    Google Scholar 

  54. Johnston PS, Feig PU, Coniff RF, Krol A, Kelley DE, Mooradian AD (1998) Chronic treatment of African-American type 2 diabetic patients with a-glucosidase inhibition. Diabetes Care 21: 416–422

    Article  PubMed  CAS  Google Scholar 

  55. Segal P, Feig PU, Schernthaner G et al. (1997) The efficacy and safety of miglitol therapy compared with glibenclamide in patients with NIDDM inadequately controlled by diet alone. Diabetes Care 20: 687–691

    Article  PubMed  CAS  Google Scholar 

  56. Johnston PS, Feig PU, Coniff Rf et al. (1998) Long-term titrated-dose a-glucosidase inhibition in non-insulin-requiring hispanic NIDDM patients. Diabetes Care 21: 409–415

    Google Scholar 

  57. Johnston PS, Coniff RF, Hoogwerf BJ et al. (1994) Effects of the carbohydrase inhibitor miglitol in sulphonylurea-treated NIDDM patients. Diabetes Care 17: 20–29

    Article  PubMed  CAS  Google Scholar 

  58. Johnson AB, Taylor R (1996) Does suppression of postprandial blood glucose excursions by the alpha-glucosidase inhibitor miglitol improve insulin sensitivity in diet-treated type II diabetic patients? Diabetes Care 19: 559–563

    Article  PubMed  CAS  Google Scholar 

  59. Johnston PS, Lebovitz HE, Coniff RF et al. (1998) Advantages of a-glucosidase inhibition as monotherapy in elderly type 2 diabetic patients. J Clin Endocrinol Metab 83: 1515–1522

    Article  PubMed  CAS  Google Scholar 

  60. Mitrakou A, Tountas N, Raptis AE et al. (1998) Long-term effectiveness of a new a-glucosidase inhibitor (BAY m 1099-Miglitol) in insulin-treated type 2 diabetes mellitus. Diabetic Medicine 15: 657–660

    Article  PubMed  CAS  Google Scholar 

  61. Sels JP, Kingma PJ, Wolffenbuttel BH, Menheere PP, Branolte JH, Nieuwenhuizen-Kruseman AC (1994) Effect of miglitol (BAY m 1099) on fasting blood glucose in type 2 diabetes mellitus. Neth J Med 44: 198–201

    PubMed  CAS  Google Scholar 

  62. Letzel H. Europäische Alpha-Glukosidase-Studie. Deutschland 1991–93, unveröffentlichte Daten

    Google Scholar 

  63. Luft D, Schmülling RM, Eggstein M (1978) Lactic acidosis in biguanide-treated diabetics–a review of 330 cases. Diabetologia 14: 75–87

    Article  PubMed  CAS  Google Scholar 

  64. Colwell JA (1993) Is it time to introduce metformin in the US? Diab Care 16: 653–655

    CAS  Google Scholar 

  65. Effect of intensive blood-glucose control with metformin complications in overweight patients with type 2 diabetes (UKPDS 34) (1998). Lancet 352: 854–65

    Google Scholar 

  66. Schernthaner G (1992) Kritische Analyse der antidiabetischen Therapie mit Metformin: Stoffwechselwirkungen, antiatherogene Effekte and Kontraindikationen. Akt Endokr Stoffw 13: 44–50

    Google Scholar 

  67. Vigneri R, Goldfine ID (1987) Role of metformin in treatment of diabetes mellitus. Diabetes Care 10: 118–122

    Article  PubMed  CAS  Google Scholar 

  68. Gregorio F, Ambbrosi F, Marchetti P et al. (1990) Low dose metformin in the treatment of type II non-insulin-dependent diabetes: clinical and metabolic evaluations. Acta Diabetologia Latina 24: 139–155

    Article  Google Scholar 

  69. Groop L, Widen E, Franssila KA et al. (1989) Different effects of insulin and oral antidiabetic agents on glucose and energy metabolism in type II diabetes mellitus. Diabetologia 32: 599–605

    Article  PubMed  CAS  Google Scholar 

  70. Hanefeld M (1993) Biguanide. In: Hanefeld M (Hrsg) Praxis der Therapie des Typ-Il-Diabetes. Pathophysiologische Grundlagen, metabolisches Syndrom, Differentialtherapie, Komplikationen. de Gruyter, Berlin, pp 145–151

    Google Scholar 

  71. Wu M-S, Johnston P, Scheu W-HH et al. (1990) Effect of metformin on carbohydrate and lipoprotein metabolism in NIDDM patients. Diabetes Care 13: 1–8

    Article  PubMed  CAS  Google Scholar 

  72. Schneider J, Erren T, Zofel P, Kaffarnik H (1990) Metformin-induced changes in serum lipids, and apoproteins in NIDDM. Atherosclerosis 82: 97–103

    Article  PubMed  CAS  Google Scholar 

  73. Vague PH, Juhan-Vague I, Alessi MC, Badier V, Valadier J (1987) Metformin decreases the high plasminogen activator inhibition capacity, plasma insulin and triglyceride levels in non diabetic obese subjects. Thromb Haemostas 57: 326–328

    CAS  Google Scholar 

  74. Grant PJ, Stickland MH, Booth NA, Prentice CRM (1991) Metformin causes a reduction in basal and post-venous occlusion plasminogen activator inhibitor-1 in type 2 diabetic patients. Diabetic Medicine 8: 361365

    Google Scholar 

  75. Landin K, Tengborn L and Smith U (1991) Treating insulin resistance in hypertension with metformin reduces both blood pressure and metabolic risk factors. J Intern Med 229: 181–187

    Article  PubMed  CAS  Google Scholar 

  76. Hermann LS (1990) Metformin: a review of its pharmacological properties and therapeutic use. Diabetes Metab 5: 233–245

    Google Scholar 

  77. Klip A, Leiter LA (1990) Cellular mechanism of action of metformin. Diabetes Care 13: 696–704

    Article  PubMed  CAS  Google Scholar 

  78. Benzi L, Trischitta U, Ciccarone A et al. (1990) Improvement with metformin in insulin internalization and processing in monocytes from NIDDM patients. Diabetes 39: 844–849

    Article  PubMed  CAS  Google Scholar 

  79. Hother-Nielsen O, Schmitz O, Andersen PH et al. (1989) Metformin improves peripheral but not hepatic insulin action in obese patients with type II diabetes. Acta Endocrinol 120: 257–265

    PubMed  CAS  Google Scholar 

  80. Nosadini R, Avogaro A, Trevisan R et al. (1987) Effect of metformin on insulin-stimulated glucose turnover and insulin binding to receptors in type II diabetes. Diabetes Care 10: 62–67

    Article  PubMed  CAS  Google Scholar 

  81. Bailey CJ (1988) Metformin revisited, its action and indications for use. Diab Med 5: 315–320

    Article  CAS  Google Scholar 

  82. Berger W (1985) Incidence of severe side effects during therapy with sulfonylureas and biguanides. Horm Met Res 17: 111

    Google Scholar 

  83. Campbell IW (1985) Metformin and the sulfonylureas; the comparative risk. Horm Met Res 17: 105

    Article  Google Scholar 

  84. Gerich JE (1989) Oral hypoglycemic agents. N Engl J Med 321: 12311245

    Google Scholar 

  85. Marchetti P, Giannarelli R, Carlo A, Navalesi R (1991) Pharmacokinetic optimisation of oral hypoglycemic therapy. Clin Pharmacokinet 21: 308317

    Google Scholar 

  86. Herman LS (1979) Metformin: a review of its pharmacologic properties and therapeutic use. Diabetes Metabolism Reviews 5: 233

    Google Scholar 

  87. Hermann LS, Kjellstroem T, Nilsson-Ehle P (1991) Effects of metformin and glibenclamide alone and in combination on serum lipids and lipoproteins in patients with non-insulin-dependent diabetes mellitus. Diabetes Metab 17: 174–179

    CAS  Google Scholar 

  88. Josephkutty S, Potter JM (1990) Comparison of tolbutamide and metformin in elderly diabetic patients. Diabetic Medicine 7: 510–514

    Article  PubMed  CAS  Google Scholar 

  89. Bailey CJ, Nattrass M (1988) Metformin treatment. Clin Endocrinol Metabol 2: 455–476

    CAS  Google Scholar 

  90. Sterne J, Junien JL (1983) Metformin: Pharmacologic mechanism of the antidiabetic and antilipidemic effects and clinical consequences. Roy Soc Med 48: 3

    Google Scholar 

  91. Lebovitz HE (1991) Metformin. In: Lebovitz HE (ed) Therapy of diabetes mellitus and related disorders. American Diabetes Association Inc., Alexandria, pp 120–123

    Google Scholar 

  92. Franke H, Fuchs J (1955) Ein neues antidiabetisches Prinzip. Dtsch Med Wschr 80: 1449

    Article  PubMed  CAS  Google Scholar 

  93. Intensive blood glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33) (1998). Lancet 352: 837–853

    Google Scholar 

  94. Julius U (1993) Sulfonylharnstoffe. In: Hanefeld M (Hrsg) Praxis der Therapie des Typ-2-Diabetes. Pathophysiologische Grundlagen, metabolisches Syndrom, Differentialtherapie, Komplikationen. de Gruyter, Berlin, pp 152–162

    Google Scholar 

  95. Panthen U (1992) Molekularer and zellulärer Wirkungsmechanismus der Sulfonylharnstoffe. Diabetes and Stoffwechsel 1: 240–242

    Google Scholar 

  96. Greenfield MS, Doberne L, Rosenthal M et al. (1982) Effect of sulfonylureas treatment on in vivo insulin secretion and action in patients with noninsulin dependent diabetes mellitus. Diabetes 31: 307–312

    Article  PubMed  CAS  Google Scholar 

  97. Goldner MG, Knatternd GL, Prout TE (1971) Effects of hypoglycemic agents on vascular complications in patients with adult-onset diabetes. III. Clinical implications of UGDP results. J Amer Med ASS 218: 1400

    Google Scholar 

  98. Müller G, Satoh Y, Geisen K (1995) Extrapancreatic effects of sulfonylureas–a comparison between glimepiride and conventional sulfonylureas. Diabetes Res Clin Prac (Suppl) 28: 115–137

    Article  Google Scholar 

  99. Harrower ADB (1996) Pharmacokinetics of oral antihyperglycaemic agents in patients with renal insufficiency. Clin Pharmacokinet 31: 111–119

    Article  PubMed  CAS  Google Scholar 

  100. Lebovitz HE (1990) Oral hypoglycemic agent. In: Rifkin H, Porte JRD (eds) Diabetes mellitus. Theory and practice, 4th ed. Elsevier, New York, pp 554–574

    Google Scholar 

  101. Lebovitz HE (1984) Cellular loci of sulfonylurea action. Diabetes Care 7: 67–71

    PubMed  CAS  Google Scholar 

  102. Rosenkranz B (1996) Pharmacokinetic basis for the safety of glimepiride in risk groups of NIDDM patients. Horm Metab Res 28: 434–439

    Article  PubMed  CAS  Google Scholar 

  103. Haupt E, Mehnert H, Schöffling K (1994) Behandlung mit insulinotropen oralen Antidiabetika (Sulfonylharnstoffen). In: Mehnert H, Schöffling K, Standl E, Usadel K-H (Hrsg) Diabetologie in Klinik und Praxis. Thieme, Stuttgart, pp 230–246

    Google Scholar 

  104. Bachmann W, Lotz N, Mehnert H, Rosak C, Schöffling K (1988) Wirksamkeit der Kombinationsbehandlung mit Glibenclamid und Insulin bei Sulfonylharnstoff-Sekundärversagen. Kontrollierte multizentrische doppelblinde klinische Prüfung. Dt med Wschr 113: 631–636

    Google Scholar 

  105. Balant L (1981) Clinical pharmacokinetics of sulfonylurea hypoglycemic drugs. Clin Pharmacokinet 6: 215–242

    Article  PubMed  CAS  Google Scholar 

  106. Berger W, Casuff F, Pasquet M, Rump A (1986) Relative incidence of severe hypoglycemia induced by sulfonylureas in the last 25 years in Switzerland. Schw Med Wschr 116: 145–151

    CAS  Google Scholar 

  107. Groop L, Groop PH, Stenman S et al. (1987) Comparison of pharmacokinetics, metabolic effects and mechanisms of action of glyburide and glipizide during long-term treatment. Diabetes Care 10: 671–678

    Article  PubMed  CAS  Google Scholar 

  108. Ratzmann KP (1990) Das sekundäre Sulfonylharnstoff-Versagen. Dtsch Med Wschr 115: 1404–1407

    Article  PubMed  CAS  Google Scholar 

  109. Asplund K, Wilholm BF, Lithner F (1983) Glibenclamide associated hypoglycemia. A report on 57 cases. Diabetologia 24: 412–417

    Article  PubMed  CAS  Google Scholar 

  110. Ferner RE, Neil HAW (1988) Sulfonylureas and hypoglycemia. Br Med J 296: 949–950

    Article  CAS  Google Scholar 

  111. Beischer W (1991) Aktuelle Therapieprinzipien des Diabetes mellitus im Alter. Z Gerontol 24: 189–197

    PubMed  CAS  Google Scholar 

  112. Holman RR for the UKPDS Group (1995) UK Prospective Diabetes Study: 3-year update. In: Schwartz CJ, Born GVR (eds) New horizons in diabetes mellitus and cardiovascular disease. Current Science, pp 183–187

    Google Scholar 

  113. Ferner RE, Chaplin S (1987) The relationship between the pharmacokinetics and the pharmacodynamic effect of oral hypoglycemic drugs. Clin Pharmacokinet 12: 379–401

    Article  PubMed  CAS  Google Scholar 

  114. Scott J, Poffenburger PL (1979) Pharmacokinetics of tolbutamid metabolism in humans. Diabetes 28: 41–51

    Article  PubMed  CAS  Google Scholar 

  115. Haupt E, Schöffling K, Beyer J (1974) Klinische Pharmakologie eines neuen blutzuckersenkenden Sulfonamidderivates im Vergleich zu älteren Antidiabetika der ersten und zweiten Generation. In: Schöffling K Kroneberg G, Laudahn G (eds) Pro-Diaban. Schattauer, Stuttgart, pp 99–106

    Google Scholar 

  116. Speck U, Mützel W, Kolb KH, Acksteiner B, Schulze PE (1974) Pharmakokinetik and Metabolitenspektrum von Glisoxepid beim Menschen. Arzneim Forsch (Drug Res) 24: 404–409

    CAS  Google Scholar 

  117. Haupt E, Köberich W, Cordes U, Beyer J, Schöffling K (1972) Untersuchungen zu Dosis-Wirkungsrelationen verschiedener Sulfonylharnstoffderivate der alten and neuen Generation. Arzneim Forsch (Drug Res) 22: 2203–2208

    CAS  Google Scholar 

  118. Kadowaki T, Hagura R, Kajinuma H et al. (1983) Chlorpropamide-induced hyponatremia incidence and risk factors. Diabetes Care 6: 486471

    Google Scholar 

  119. Rupp W, Christ O, Fulberth W (1972) Untersuchung zur Bioverfügbarkeit von Glibenclamid. Arzneim Forsch 22: 471–473

    CAS  Google Scholar 

  120. Jakson JE, Bressler R (1981) Clinical pharmacology of sulfonylureas hypoglycemic agent. Drugs 22: 211–245

    Article  Google Scholar 

  121. Fuccela LM, Tamassia V, Valzelli G (1973) Metabolism and kinetics of the hypoglycemic agent glipizide in man: comparison with glibenclamide. J Clin Pharmacol 13: 68

    Google Scholar 

  122. Schmitt HA, Schoog M, Schweer KH, Winkler L (1973) Pharmacokinetics and pharmacodynamics as well as metabolism of orally and intravenous administered C14 glipizide. A new antidiabetic. Diabetologia 9: 320–330

    Google Scholar 

  123. Balant L, Fabre J, Weber F (1977) Behaviour of glibenclamide on repeated administration to diabetic patients. Europ J Clin Pharmacol 11: 19

    Article  CAS  Google Scholar 

  124. Wahlin-Boll E, Melander A, Sartor G, Schnersten B (1980) Influence of food intake on the absorption and effect of glipizide in diabetics and in healthy subjects. Europ J Clin Pharmacol 18: 279–283

    Article  CAS  Google Scholar 

  125. Smits P, Thien T (1995) Cardiovascular effects of sulphonylurea derivatives. Implication for the treatment of NIDDM? Diabetologia 38: 116121

    Google Scholar 

  126. Veneman TF, Tack CI, van Haeften TW (1998) The newly developed sulfonylurea glimepiride: a new ingredient, an old recipe. Neth J Med 52: 179–186

    Article  PubMed  CAS  Google Scholar 

  127. Dills DG, Schneider J and The Glimepiride/Glyburide Research Group (1996) Clinical evaluation of glimepiride versus glyburide in NIDDM in a double-blind comparative study. Horm Metab Res 28: 426–429

    CAS  Google Scholar 

  128. Draeger KE, Wernicke-Panten W, Lomp HJ, Schüler E, Roßkamp R (1996) Long-term treatment of type 2 diabetic patients with the new oral antidiabetic agent glimepiride (Amaryl®): a double-blind comparison with glibenclamide. Horm Metab Res 28: 419–425

    Article  PubMed  CAS  Google Scholar 

  129. Eckel J (1996) Direct effects of glimepiride on protein expression of cardiac glucose transporters. Horm Metab Res 28: 508–511

    Article  PubMed  CAS  Google Scholar 

  130. Massi-Benedetti M, Herz M, Pfeiffer C (1996) The effects of acute exercise on metabolic control in type II diabetic patients treated with glimepiride or glibenclamide. Horm Metab Res 28: 451–455

    Article  PubMed  CAS  Google Scholar 

  131. Hatorp V, Haug-Pihale G (1998) A comparison of the pharmacokinetics of repaglinide in healthy subjects with that subjects with chronic liver disease. Diabetes (Suppl. 1) 1375:A 356

    Google Scholar 

  132. Fuhlendorff J, Rorsman P, Kofod H et al. (1998) Stimulation of insulin release by repaglinide and glibenclamide involves both common and distinct processes. Diabetes 47: P345–351

    Article  Google Scholar 

  133. Fuhlendorff J (1998) Molecular identification of a specific binding site (36 kDa) for repaglinide. Diabetes (Suppl 1 ) 1594: A416

    Google Scholar 

  134. Diederen W, Kolb W (1997) Repaglinide a new rapid and short acting non sulfonylurea insulin secretagogue inhibits ATP-sensitive potassium channels ( ATP) in isolated heart muscle cells. Diabetologia (Suppl 1 ): A324

    Google Scholar 

  135. Vinambres C, Villanueva-Penacarillo ML, Valverde I, Malaisse WJ (1996) Repaglinide preserves nutrient-stimulated biosynthetic activity in rat pancreatic islets. Pharmacological Research 34: 83–85

    Article  PubMed  CAS  Google Scholar 

  136. Bakkali-Nadi A, Zhang TM, Malaisse WJ (1996) Effects of the methyl esters of pyruvate, succinate and glutamate on the secretory response to meglitinide analogues in rat pancreatic islets. Pharmacol Res 33: 191–194

    Article  PubMed  CAS  Google Scholar 

  137. Goldberg RB, Brodows RG, Damsbo P for the Repaglinide Study Group (1998) A randomized, placebo-controlled trial of repaglinide in the treatment of type 2 diabetes. Diabetes (Suppl 1 ): 383

    Google Scholar 

  138. Lucas CP, Rendell MS, Sosenko JM et al. (1994) A placebo-controlled, double-blind, randomized, three-month maintenance study of repaglinide in the treatment of patients with type 2 diabetes. Novo Nordisk study AGEE/DCD/033/USA: Data on file

    Google Scholar 

  139. Van Gaal L (1992) A dose-titration study with AG-EE 623 ZW in diet-treated type 2 diabetic patients. Novo Nordisk study AGEE/DCD/005/ B: Data on file

    Google Scholar 

  140. Fox C (1996) A 1-year multicentre, randomized and double-blind comparison of repaglinide and glibenclamide for the treatment of type 2 diabetes mellitus. Novo Nordisk study AGEE/DCD/046/UK: Data on file

    Google Scholar 

  141. Van Gaal L, Drouin P P, Navalesi R (1996) A 1-year multicentre, randomized and double-blind comparison of repaglinide and gliclazide for the treatment of type 2 diabetes mellitus. Novo Nordisk study AGEE/DCD/047/B/F/I: Data on file

    Google Scholar 

  142. Dejgaard A. Madsbad S, Kilhovd B et al. (1998) Repaglinide compared to glipizide in the treatment of type 2 diabetic patients. Diabetologia (Suppl 1):A 236

    Google Scholar 

  143. Müller P, Strange P (1998) Long-term use of repaglinide versus glyburide in type 2 diabetes. Diabetologia (Suppl. 1 ): A60

    Google Scholar 

  144. Wolffenbuttel BHR, Landgraf R (1998) Long-term efficacy and safety of repaglinide in comparison with glibenclamide in subjects with type 2 diabetes. Diabetologia (Suppl 1 ): A235

    Google Scholar 

  145. Marbury ThC, Strange P for the Repaglinide Study Group (1998) Multicenter, randomized comparison of the therapeutic effects of longterm use of repaglinide with glyburide in type 2 diabetes. Diabetes (Suppl 1):A 75

    Google Scholar 

  146. Landgraf R, Bilo HJG (1997) Repaglinide vs. glibenclamide: a 14 week efficacy and safety comparison. Diabetes (Suppl 1 ): A0626

    Google Scholar 

  147. Moses R, Slobodniuk R, Boyages S et al. (1997) Additional treatment with repaglinide provides significant improvement in glycemic control in NIDDM patients poorly controlled on metformin. 57th Scientific Sessions of the American Diabetes Association, Boston, MA, USA

    Google Scholar 

  148. Marbury TC, Hatorp V, Damsbo P, Müller PG (1998) Repaglinide can be given in a flexible preprandial dosing regimen in patients with type 2 diabetes. Diabetologia (Suppl 1 ): A236

    Google Scholar 

  149. Marbury ThC, Hatorp V (1998) Pharmakokinetics of repaglinide after single and multiple doses in patients with renal impairment compared with normal healthy volunters. Diabetes (Suppl 1):A 357

    Google Scholar 

  150. Melander A (1996) Oral antidiabetic drugs: an overview. Diabet Med 13 (9 Suppl 6): 143–147

    Google Scholar 

  151. Van Lier JJ, Wemer J (1996) An open label, two period cross-over interaction trial evaluating the effect of repaglinide on digoxin at steady state in healthy volunteers. Novo Nordisk study AGEE/DCD/067/NL: Data on file

    Google Scholar 

  152. Seiberling M (1996) An open label, two period cross-over pharmacokinetic trial evaluating the possibility of interaction between theophylline and repaglinide during multiple dose administration to healthy volunteers. Novo Nordisk study AGEE/DCD/068/D: Data on file

    Google Scholar 

  153. Cohen A (1996) Assessment of pharmacokinetic and pharmacodynamic interaction between warfarin and repaglinide. Novo Nordisk study AGEE/DCD/069/USA: Data on file

    Google Scholar 

  154. Van Lier JJ, Werner J (1996) An open label, two period cross-over pharmacokinetic trial evaluating the possibility of interaction between repaglinide and cimetidine during multiple dose administration to healthy volunteers. Novo Nordisk study AGEE/DCD/066/NL: Data on file

    Google Scholar 

  155. Bouter KP, Deijns JJM, Hanefeld M, Guitard Ch (1998) Nateglinide (A-4166), a new insulinotrophic agent, controls prandial hyperglycemia

    Google Scholar 

  156. Deijns JJM, Bouter KP, Hanefeld M, Guitard Ch (1998) Nateglinide (A-4166), controls glycemia in diet-treated type 2 diabetic patients. Diabetologia (Suppl 1 ): 891

    Google Scholar 

  157. Hirschberg Y, McLeod J, Garreffa St, Spratt D (1999) Pharmacodynamics and dose response of nateglinide in type 2 diabetics. Diabetes (Suppl 1 ): 430

    Google Scholar 

  158. Hu S, Wang S, Dunning BE (1999) Tissue selectivity of nateglinide: Study on cardiovascular and ß-cell KATp channels. Diabetes (Suppl 1 ): 1090

    Google Scholar 

  159. Suter SL, Nolan JJ, Wallace P, Gumbiner B, Olefsky JM (1992) Metabolic effects of new oral hypoglycemic agent CS-045 in NIDDM subjects. Diabetes Care 15: 193–203

    Article  PubMed  CAS  Google Scholar 

  160. Troglitazone Study Group (1997) The metabolic effects of troglitazone in non-insulin dependent diabetes. Diabetes (Suppl. 1 ): 149A

    Google Scholar 

  161. Maggs DG, Buchanan ThA, Burant ChF et al. (1998) Metabolic effects of troglitazone monotherapy in type 2 diabetes mellitus. Ann Intern Med 128: 176–185

    Article  PubMed  CAS  Google Scholar 

  162. Sturmvoll M (1998) Troglitazone. Diabetes and Stoffwechsel 7: 136–142

    Google Scholar 

  163. Saltiel AR, Olefsky JM (1996) Perspectives in diabetes: Thiazolidinediones in the treatment of insulin resistance and type II diabetes. Diabetes 45: 1661–1669

    Google Scholar 

  164. Lehmann JM, Moore LB, Smith-Oliver TA et al. (1995) An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferatoractivated receptor gamma ( PPAR g ). J Biol Chem 270: 12953–12956

    Google Scholar 

  165. Henry RR (1997) Thiazolidinediones. Endocrin Metab Clin North Am 26: 553–573

    Article  CAS  Google Scholar 

  166. Tafuri SR (1996) Troglitazone enhances differentiation, basal glucose uptake, and Glut 1 protein levels in 3T3–L1 adipocytes. Endocrinology 137: 4706

    Article  PubMed  CAS  Google Scholar 

  167. Kellerer M, Kroder G, Tippmer S et al. (1994) Troglitazone prevents glucose-induced insulin resistance of insulin receptor in rat-1 fibroblasts. Diabetes 43: 447

    Article  PubMed  CAS  Google Scholar 

  168. Gitlin N, Julie NL, Spurr ChL, Lim KN, Juarbe HM (1998) Two cases of severe clinical and histologic hepatotoxicity associated with troglitazone. Ann Intern Med 129: 36–38

    Article  PubMed  CAS  Google Scholar 

  169. Neuschwander-Tetri BA, Isley WL, Oki JC et al. (1998) Troglitazone-induced hepatic failure Leading to liver transplantation. Ann Intern Med 129: 38–41

    Article  PubMed  CAS  Google Scholar 

  170. Raskin P, Rappaport EB (1999) Rosiglitazone (RSG) improves fasting and post-prandial plasma glucose in type 2 diabetes. Diabetes (Suppl 1 ): 0409

    Google Scholar 

  171. Fonseca V, Biswas N, Salzman A (1999) Once-daily rosiglitazone (RSG) in combination with metformin (MET) effectively reduces hyperglycemia in patients with type 2 diabetes. Diabetes (Suppl 1 ): 0431

    Google Scholar 

  172. Lebovitz HE (1998) Rosiglitazone (BRL 49653) monotherapy has significant glucose effect in type 2 diabetic patients. Diabetologia (Suppl 1 ): 922

    Google Scholar 

  173. Gomis R, Jones NP, Vallance S, Patwardhan R (1999) Low-dose rosiglitazone (RSG) provides additional glycemic control when combined with sulfonylureas in type 2 diabetes ( T2D ). Diabetes (Suppl. 1 ): 0266

    Google Scholar 

  174. Raskin P; Dole JF, Rappaport EB (1999) Rosiglitazone (RSG) improves glycemic control in poorly controlled, insulin treated type 2 diabetes ( T2D ). Diabetes (Suppl 1 ): 0404

    Google Scholar 

  175. Grunberger G, Weston WM, Patwardhan R, Rappaport EB (1999) Rosiglitazone once or twice daily improves glycemic control in patients with type 2 diabetes ( T2D ). Diabetes (Suppl 1 ): 0439

    Google Scholar 

  176. Göke B, Kleist P, Scherbaum W and die Pioglitazon-Studiengruppe (1999) Pioglitazon: Die Deutsche Klinische Phase II Studie. Diabetes and Stoffwechsel (Suppl 1 ): A27

    Google Scholar 

  177. Schneider R, Egan J, Houser V, Pioglitazone 010 study group (1999) Combination therapy with pioglitazone and sulfonylurea in patients with type 2 diabetes. Diabetes (Suppl 1 ): 0458

    Google Scholar 

  178. Egan J, Rubin C, Mathisen A, Pioglitazone 027 study group (1999) Combination therapy with pioglitazone and metformin in patients with type 2 diabetes. Diabetes (Suppl 1 ): 0504

    Google Scholar 

  179. Rubin C, Egan J, Schneider R, Pioglitazone 014 study group (1999) Combination therapy with pioglitazone and insulin in patients with type 2 diabetes. Diabetes (Suppl 1 ): 0474

    Google Scholar 

  180. Mathisen A, Geerlof J, Houser V, Pioglitazone 026 Study Group (1999) The effect of pioglitazone on glucose control and lipid profiles in patients with type 2 diabetes. Diabetes (Suppl 1 ): 0441

    Google Scholar 

  181. Mathisen A, Egan J, Schneider R, Pioglitazone 010 Study Group (1999) The effect of combination therapy with pioglitazone and sulfonylurea on the lipid profile in patients with type 2 diabetes. Diabetes (Suppl 1 ): 0457

    Google Scholar 

  182. Egan J, Rubin C, Mathisen A, Pioglitazone 027 Study Group (1999) Adding pioglitazone to metformin therapy improves the lipid profile in patients with type 2 diabetes. Diabetes (Suppl. 1 ): 0459

    Google Scholar 

  183. Yamasaki Y, Kawamori R, Wasada T et al. (1997) Pioglitazone (AD-4833) ameliorates insulin resistance in patients with NIDDM. Tohoku J Exp Med 183: 173–183

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hanefeld, M., Fischer, S. (2000). Therapie des Diabetes mellitus. In: Frölich, J.C., Kirch, W. (eds) Praktische Arzneitherapie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09398-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09398-6_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66071-2

  • Online ISBN: 978-3-662-09398-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics