Antiinfektiöse Therapie

  • J. Fauler
  • U. Mai
  • M. Siepmann

Zusammenfassung

Die Behandlung ambulant erworbener bakterieller Infektionen stellt durch die große Anzahl spezifischer Antibiotika ein vergleichsweise geringes therapeutisches Problem dar. Im Gegensatz hierzu gestaltet sich die Therapie nosokomialer Infektionen wegen ihrer anders gearteten, oft auch multiresistenten bakteriellen Erreger zunehmend schwieriger. Die Mechanismen, die zu einer Resistenz bakterieller Erreger gegen Antibiotika führen, entwickeln sich zurzeit sehr viel rascher, als es gelingt, Antibiotika mit neuen Angriffspunkten oder Wirkmechanismen in die Therapie einzuführen. Um auch in Zukunft Antibiotika erfolgreich einsetzen zu können, ist es notwendig, Antibiotika kritisch und, wenn immer möglich, gezielt einzusetzen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Donowitz GR, Mandell GL (1988) Beta-Lactam antibiotics (1). N Engl J Med 318: 419–426.Google Scholar
  2. 2.
    Donowitz GR, Mandell GL (1988) Drug therapy. Beta-lactam antibiotics (2). N Engl J Med 318: 490–500.PubMedGoogle Scholar
  3. 3.
    Rosin H (1989) The beta-lactam antibiotics. Internist (Berl). 30: 2–12. Review. German. No abstract available.Google Scholar
  4. 4.
    Wright AJ (1999) The penicillins. Mayo Clin Proc 74: 290–307.PubMedGoogle Scholar
  5. 5.
    Lin RY (1992) A perspective on penicillin allergy. Arch Intern Med 152: 930–937.PubMedGoogle Scholar
  6. 6.
    Parry MF (1987) The penicillins. Med Clin North Am 71: 1093–1112.PubMedGoogle Scholar
  7. 7.
    Heikkila A, Erkkola R (1994) Review of beta-lactam antibiotics in pregnancy. The need for adjustment of dosage schedules. Clin Pharmacokinet 27: 49–62.PubMedGoogle Scholar
  8. 8.
    Nathwani D, et al. (1993) Penicillins. A current review of their clinical pharmacology and therapeutic use. Drugs. 45: 866–894. Review.PubMedGoogle Scholar
  9. 9.
    Wright AJ, Wilkowske CJ (1991) The penicillins. Mayo Clin Proc 66: 1047–1063.PubMedGoogle Scholar
  10. 10.
    Phillips JA, Lovejoy FH, Jr., Matsumiya Y (1976) Ampicillin-associated diarrhea: effect of dosage and route of administration. Pediatrics 58: 869–872.PubMedGoogle Scholar
  11. 11.
    Drusano GL, Schimpff SC, Hewitt WL (1984) The acylampicillins: mezlocillin, piperacillin, and azlocillin. Rev Infect Dis 6: 13–32.PubMedGoogle Scholar
  12. 12.
    Wade JC, Schimpff SC, Newman KA, et al. (1980) Potential of mezlocilin as empiric single-agent therapy in febrile granulocytopenic cancer patients. Antimicrob Agents Chemother 18: 299–306.PubMedGoogle Scholar
  13. 13.
    Abdel-Rahman SM, Kearns GL (1998) The beta-lactamase inhibitors: clinical pharmacology and rational application to combination antibiotic therapy. Pediatr Infect Dis J 17: 1185–1194.PubMedGoogle Scholar
  14. 14.
    Noguchi JK, Gill MA (1988) Sulbactam: a beta-lactamase inhibitor. Clin Pharm 7: 37–51.PubMedGoogle Scholar
  15. 15.
    Bush LM, Calmon J, Johnson CC (1995) Newer penicillins and beta-lactamase inhibitors. Infect Dis Clin North Am 9: 653–686.PubMedGoogle Scholar
  16. 16.
    Perry CM, Markham A (1999) Piperacillin/tazobactam: an updated review of its use in the treatment of bacterial infections. Drugs 57: 805–843.PubMedGoogle Scholar
  17. 17.
    Marshall WF, Blair JE (1999) The cephalosporins. Mayo Clin Proc 74: 187–195.PubMedGoogle Scholar
  18. 18.
    Sabath LD (1989) Reappraisal of the antistaphylococcal activities of first-generation (narrow-spectrum) and second-generation (expanded-spectrum) cephalosporins. Antimicrob Agents Chemother 33: 407–411.PubMedGoogle Scholar
  19. 19.
    Thompson JW, Jacobs RF (1993) Adverse effects of newer cephalosporins. An update. Drug Saf 9: 132–142.PubMedGoogle Scholar
  20. 20.
    Petz LD (1978) Immunologic cross-reactivity between penicillins and cephalosporins: a review. J Infect Dis 137 Suppl: S74 - S79.Google Scholar
  21. 21.
    Fekety FR (1990) Safety of parenteral third-generation cephalosporins. Am J Med 88: 38S - 44S.PubMedGoogle Scholar
  22. 22.
    Schwarz A, Perez-Canto A (1998) Nephrotoxicity of antiinfective drugs. Int J Clin Pharmacol Ther 36: 164–167.PubMedGoogle Scholar
  23. 23.
    Zhanel GG (1990) Cephalosporin-induced nephrotoxicity: does it exist? Dicp 24: 262–265.PubMedGoogle Scholar
  24. 24.
    Neu HC (1990) Third generation cephalosporins: safety profiles after 10 years of clinical use. J Clin Pharmacol 30: 396–403.PubMedGoogle Scholar
  25. 25.
    Barza M, Furie B, Brown AE, et al. (1986) Defects in vitamin K-dependent carboxylation associated with moxalactam treatment. J Infect Dis 153: 1166–1169.PubMedGoogle Scholar
  26. 26.
    Grasela TH, Jr., Walawander CA, Welage LS, et al. (1989) Prospective surveillance of antibiotic-associated coagulopathy in 970 patients. Pharmacotherapy 9: 158–164.PubMedGoogle Scholar
  27. 27.
    Goss TF, Walawander CA, Grasela TH, Jr., et al. (1992) Prospective evaluation of risk factors for antibiotic-associated bleeding in critically ill patients. Pharmacotherapy 12: 283–291.PubMedGoogle Scholar
  28. 28.
    Rankin GO, Sutherland CH (1989) Nephrotoxicity of aminoglycosides and cephalosporins in combination. Adverse Drug React Acute Poisoning Rev 8: 73–88.PubMedGoogle Scholar
  29. 29.
    Quintiliani R, Nightingale CH (1978) Cefazolin. Ann Intern Med 89: 650–656.Google Scholar
  30. 30.
    Gold B, Rodriguez WI (1983) Cefuroxime: mechanisms of action, antimicrobial activity, pharmacokinetics, clinical applications, adverse reactions and therapeutic indications. Pharmacotherapy 3: 82–100.PubMedGoogle Scholar
  31. 31.
    Smith BR, LeFrock JL (1983) Cefuroxime: antimicrobial activity, Pharmacology, and clinical efficacy. Ther Drug Monit 5: 149–160.PubMedGoogle Scholar
  32. 32.
    Brogard JM, Jehl F, Willemin B, et al. (1989) Clinical pharmacokinetics of cefotiam. Clin Pharmacokinet 17: 163–174.PubMedGoogle Scholar
  33. 33.
    Sanders CV, Greenberg RN, Marier RL (1985) Cefamandole and cefoxitin. Ann Intern Med 103: 70–78.PubMedGoogle Scholar
  34. 34.
    Dudley MN, Barriere SL (1982) Cefotaxime: microbiology, pharmacology, and clinical use. Clin Pharm 1: 114–124.PubMedGoogle Scholar
  35. 35.
    Gentry LO (1985) Antimicrobial activity, pharmacokinetics, therapeutic indications and adverse reactions of ceftazidime. Pharmacotherapy 5: 254–267.PubMedGoogle Scholar
  36. 36.
    Sirgo MA, Norris S (1991) Ceftazidime in the elderly: appropriateness of twice-daily dosing. Dicp 25: 284–288.PubMedGoogle Scholar
  37. 37.
    Wynd MA, et al. (1996) Cefepime: a fourth-generation parenteral cephalosporin. Ann Pharmacother. 30: 1414–1424. Review.PubMedGoogle Scholar
  38. 38.
    Jones RN, Preston DA (1983) The antimicrobial activity of cephalexin against old and new pathogens. Postgrad Med J 59: 9–15.PubMedGoogle Scholar
  39. 39.
    Tanrisever B, Santella PJ (1986) Cefadroxil. A review of its antibacterial, pharmacokinetic and therapeutic properties in comparison with cephalexin and cephradine. Drugs 32 Suppl 3: 1–16.Google Scholar
  40. 40.
    Hyslop DL (1988) Cefaclor safety profile: a ten-year review. Clin Ther 11 Suppl A: 83–94.Google Scholar
  41. 41.
    Sides GD, Franson TR, DeSante KA, et al. (1988) A comprehensive review of the clinical pharmacology and pharmacokinetics of cefaclor. Clin Ther 11 Suppl A: 5–19.Google Scholar
  42. 42.
    Perry CM, Brogden RN (1996) Cefuroxime axetil. A review of its antibacterial activity, pharmacokinetic properties and therapeutic efficacy. Drugs 52: 125–158.PubMedGoogle Scholar
  43. 43.
    Brogden RN, Campoli-Richards DM (1989) Cefixime. A review of its antibacterial activity. Pharmacokinetic properties and therapeutic potential. Drugs 38: 524–550.PubMedGoogle Scholar
  44. 44.
    Markham A, Brogden RN (1995) Cefixime. A review of its therapeutic efficacy in lower respiratory tract infections. Drugs 49: 1007–1022.PubMedGoogle Scholar
  45. 45.
    Chocas EC, Paap CM, Godley PJ (1993) Cefpodoxime proxetil: a new, broad-spectrum, oral cephalosporin. Ann Pharmacother 27: 1369–1377.PubMedGoogle Scholar
  46. 46.
    Bryson HM, et al. (1993) Cefetamet pivoxil. A review of its antibacterial activity, pharmacokinetic properties and therapeutic use. Drugs. 45: 589–621. Review.PubMedGoogle Scholar
  47. 47.
    Guay DR (1997) Ceftibuten: a new expanded-spectrum oral cephalosporin. Ann Pharmacother. 31: 1022–1033. Review.PubMedGoogle Scholar
  48. 48.
    Owens RC, Jr., et al. (1997) Ceftibuten: an overview. Pharmacotherapy. 17: 707–720. Review.Google Scholar
  49. 49.
    Wiseman LR, Balfour JA (1994) Ceftibuten. A review of its antibacterial activity, pharmacokinetic properties and clinical efficacy. Drugs 47: 784–808.PubMedGoogle Scholar
  50. 50.
    Hellinger WC, Brewer NS (1999) Carbapenems and monobactams: imipenem, meropenem, and aztreonam. Mayo Clin Proc 74: 420–434.PubMedGoogle Scholar
  51. 51.
    Bradley JS, Garau J, Lode H, et al. (1999) Carbapenems in clinical practice: a guide to their use in serious infection. Int J Antimicrob Agents 11: 93–100.PubMedGoogle Scholar
  52. 52.
    Balfour JA, Bryson HM, Brogden RN (1996) Imipenem/cilastatin: an update of its antibacterial activity, pharmacokinetics and therapeutic efficacy in the treatment of serious infections. Drugs 51: 99–136.PubMedGoogle Scholar
  53. 53.
    Fish DN, Singletary TJ (1997) Meropenem, a new carbapenem antibiotic. Pharmacotherapy 17: 644–669.PubMedGoogle Scholar
  54. 54.
    Bradley JS (1997) Meropenem: a new, extremely broad spectrum beta-lactam antibiotic for serious infections in pediatrics. Pediatr Infect Dis J. 16: 263–268. Review. No abstract available.Google Scholar
  55. 55.
    Cunha BA (1999) Meropenem in elderly and renally impaired patients [corrected and republished article originally printed in Int J Antimicrob Agents 1998 May;10(2): 107–17]. Int J Antimicrob Agents 11: 167–177.Google Scholar
  56. 56.
    Odenholt I (2001) Ertapenem: a new carbapenem. Expert Opin Investig Drugs 10: 1157–1166.PubMedGoogle Scholar
  57. 57.
    Westley-Horton E, Koestner JA (1991) Aztreonam: a review of the first monobactam. Am J Med Sci 302: 46–49.PubMedGoogle Scholar
  58. 58.
    MacLeod CM, Bartley EA, Payne JA, et al. (1984) Effects of cirrhosis on kinetics of aztreonam. Antimicrob Agents Chemother 26: 493–497.PubMedGoogle Scholar
  59. 59.
    Henry SA, Bendush CB (1985) Aztreonam: worldwide overview of the treatment of patients with gram-negative infections. Am J Med 78: 57–64.PubMedGoogle Scholar
  60. 60.
    Edson RS, Terrell CL (1999) The aminoglycosides. Mayo Clin Proc 74: 519–528.PubMedGoogle Scholar
  61. 61.
    Pancoast SJ (1988) Aminoglycoside antibiotics in clinical use. Med Clin North Am 72: 581–612.PubMedGoogle Scholar
  62. 62.
    Begg EJ, Barclay ML, Duffull SB (1995) A suggested approach to once-daily aminoglycoside dosing. Br J Clin Pharmacol 39: 605–609.PubMedGoogle Scholar
  63. 63.
    Barclay ML, Kirkpatrick CM, Begg EJ (1999) Once daily aminoglycoside therapy. Is it less toxic than multiple daily doses and how should it be monitored? Clin Pharmacokinet 36: 89–98.PubMedGoogle Scholar
  64. 64.
    Kumana CR, Yuen KY (1994) Parenteral aminoglycoside therapy. Selection, administration and monitoring. Drugs 47: 902–913.PubMedGoogle Scholar
  65. 65.
    Kahlmeter G, Dahlager JI (1984) Aminoglycoside toxicity–a review of clinical studies published between 1975 and 1982. J Antimicrob Chemother 13 Suppl A: 9–22.Google Scholar
  66. 66.
    Hoitsma AJ, Wetzels JF, Koene RA (1991) Drug-induced nephrotoxicity. Aetiology, clinical features and management. Drug Saf 6: 131–147.Google Scholar
  67. 67.
    Moore RD, Smith CR, Lipsky JJ, et al. (1984) Risk factors for nephrotoxicity in patients treated with aminoglycosides. Ann Intern Med 100: 352–357.PubMedGoogle Scholar
  68. 68.
    Andrassy K (1991) Renal incompatibility with antibacterial drugs: diagnosis and preventive measures. Infection 19 Suppl 1: S25–28.Google Scholar
  69. 69.
    Black FO, Pesznecker SC (1993) Vestibular ototoxicity. Clinical considerations. Otolaryngol Clin North Am 26: 713–736.PubMedGoogle Scholar
  70. 70.
    Rybak MJ, Abate BJ, Kang SL, et al. (1999) Prospective evaluation of the effect of an aminoglycoside dosing regimen on rates of observed nephrotoxicity and ototoxicity. Antimicrob Agents Chemother 43: 1549–1555.PubMedGoogle Scholar
  71. 71.
    Schacht J (1998) Aminoglycoside ototoxicity: prevention in sight? Otolaryngol Head Neck Surg 118: 674–677.PubMedGoogle Scholar
  72. 72.
    Fausti SA, Larson VD, Noffsinger D, et al. (1994) High-frequency audiometric monitoring strategies for early detection of ototoxicity. Ear Hear 15: 232–239.PubMedGoogle Scholar
  73. 73.
    Brogden RN, Pinder RM, Sawyer PR, et al. (1976) Tobramycin: a review of its antibacterial and pharmacokinetic properties and therapeutic use. Drugs 12: 166–200.PubMedGoogle Scholar
  74. 74.
    Philips JB, Cassady G (1982) Amikacin: pharmacology, indications and cautions for use, and dose recommendations. Semin Perinatol 6: 166–171.PubMedGoogle Scholar
  75. 75.
    Ristuccia AM, Cunha BA (1985) An overview of amikacin. Ther Drug Monit 7: 12–25.PubMedGoogle Scholar
  76. 76.
    Smilack JD, Wilson WR, Cockerill FRd (1991) Tetracyclines, chloramphenicol, erythromycin, clindamycin, and metronidazole. Mayo Clin Proc 66: 1270–1280.PubMedGoogle Scholar
  77. 77.
    Saivin S, Houin G (1988) Clinical pharmacokinetics of doxycycline and minocycline. Clin Pharmacokinet 15: 355–366.PubMedGoogle Scholar
  78. 78.
    Smilack JD (1999) The tetracyclines. Mayo Clin Proc 74: 727–729.PubMedGoogle Scholar
  79. 79.
    Bennett WM (1988) Guide to drug dosage in renal failure. Clin Pharmacokinet 15: 326–354.PubMedGoogle Scholar
  80. 80.
    Francke EL, Neu HC (1987) Chloramphenicol and tetracyclines. Med Clin North Am 71: 1155–1168.PubMedGoogle Scholar
  81. 81.
    Keller H (1991) Comparison of the adverse effect profile of different substances such as penicillins, tetracyclines, sulfonamides and quinolones. Infection 19 Suppl 1: S19–24.Google Scholar
  82. 82.
    Jonas M, Cunha BA (1982) Minocycline. Ther Drug Monit 4: 137–145.Google Scholar
  83. 83.
    Alvarez-Elcoro S, Enzler MJ (1999) The macrolides: erythromycin, clarithromycin, and azithromycin. Mayo Clin Proc 74: 613–634.PubMedGoogle Scholar
  84. 84.
    Washington JAd, Wilson WR (1985) Erythromycin: a microbial and clinical perspective after 30 years of clinical use (1). Mayo Clin Proc 60: 189–203.Google Scholar
  85. 85.
    Washington JAd, Wilson WR (1985) Erythromycin: a microbial and clinical perspective after 30 years of clinical use (2). Mayo Clin Proc 60: 271–278.Google Scholar
  86. 86.
    Periti P, Mazzei T, Mini E, et al. (1989) Clinical pharmacokinetic properties of the macrolide antibiotics. Effects of age and various pathophysiological states ( Part I ). Clin Pharmacokinet 16: 193–214.Google Scholar
  87. 87.
    Neu HC (1991) The development of macrolides: clarithromycin in perspective. J Antimicrob Chemother 27 Suppl A: 1–9.Google Scholar
  88. 88.
    Markham A, Faulds D (1994) Roxithromycin. An update of its antimicrobial activity, pharmacokinetic properties and therapeutic use [published erratum appears in Drugs 1994 Nov;48(5):793]. Drugs 48: 297–326.Google Scholar
  89. 89.
    Periti P, Mazzei T, Mini E, et al. (1993) Adverse effects of macrolide antibacterials. Drug Saf 9: 346–364.PubMedGoogle Scholar
  90. 90.
    Shain CS, Amsden GW (2002) Telithromycin: the first of the ketolides. Ann Pharmacother 36: 452–464.PubMedGoogle Scholar
  91. 91.
    Piscitelli SC, Danziger LH, Rodvold KA (1992) Clarithromycin and azithromycin: new macrolide antibiotics [published erratum appears in Clin Pharm 1992 Apr;l l(4): 308[. Clin Pharm 11: 137–152.PubMedGoogle Scholar
  92. 92.
    Naumann P, Dopp C (1989) Fluoroquinolones–antibacterial activity, pharmacokinetics and indications for a new group of chemotherapeutic drugs. Internist (Berl) 30: 20–31.Google Scholar
  93. 93.
    Neu HC (1990) Quinolones in perspective. J Antimicrob Chemother 26 Suppl B: 1–6.Google Scholar
  94. 94.
    Goldstein EJ (1996) Possible role for the new fluoroquinolones (levofloxacin, grepafloxacin, trovafloxacin, clinafloxacin, sparfloxacin, and DU-6859a) in the treatment of anaerobic infections: review of current information on efficacy and safety. Clin Infect Dis. 23 Suppl 1: S25–30. Review.Google Scholar
  95. 95.
    von Rosenstiel N, Adam D (1994) Quinolone antibacterials. An update of their pharmacology and therapeutic use [published erratum appears in Drugs 1994 Aug;48(2):326]. Drugs 47: 872–901.Google Scholar
  96. 96.
    Walker RC, Wright AJ (1991) The fluoroquinolones. Mayo Clin Proc 66: 1249–1259.PubMedGoogle Scholar
  97. 97.
    Norrby SR (1991) Side-effects of quinolones: comparisons between quinolones and other antibiotics. Eur J Clin Microbiol Infect Dis 10: 378–383.PubMedGoogle Scholar
  98. 98.
    Hayem G, Carbon C (1995) A reappraisal of quinolone tolerability. The experience of their musculoskeletal adverse effects. Drug Saf 13: 338–342.PubMedGoogle Scholar
  99. 99.
    Brouwers JR (1992) Drug interactions with quinolone antibacterials. Drug Saf 7: 268–281.PubMedGoogle Scholar
  100. 100.
    Radandt JM, Marchbanks CR, Dudley MN (1992) Interactions of fluoroquinolones with other drugs: mechanisms, variability, clinical significance, and management. Clin Infect Dis 14: 272–284.PubMedGoogle Scholar
  101. 101.
    Holmes B, Brogden RN, Richards DM (1985) Norfloxacin. A review of its antibacterial activity, pharmacokinetic properties and therapeutic use. Drugs 30: 482–513.Google Scholar
  102. 102.
    Hooper DC, et al. (1989) Norfloxacin, ciprofloxacin, and ofloxacin: current clinical roles. Curr Clin Top Infect Dis. 10: 194–240. Review. No abstract available.Google Scholar
  103. 103.
    Miano L, et al. (1990) Review of norfloxacin in lower urinary tract infections. Eur Urol. 17 Suppl 1: 13–18. Review.Google Scholar
  104. 104.
    Todd PA, Faulds D (1991) Ofloxacin. A reappraisal of its antimicrobial activity, pharmacology and therapeutic use. Drugs 42: 825–876.Google Scholar
  105. 105.
    Flor S (1989) Pharmacokinetics of ofloxacin. An overview. Am J Med 87: 24S - 30S.PubMedGoogle Scholar
  106. 106.
    Davis R, Markham A, Balfour JA (1996) Ciprofloxacin. An updated review of its pharmacology, therapeutic efficacy and tolerability. Drugs 51: 1019–1074.Google Scholar
  107. 107.
    Forrest A, Weir M, Plaisance KI, et al. (1988) Relationships between renal function and disposition of oral ciprofloxacin. Antimicrob Agents Chemother 32: 1537–1540.PubMedGoogle Scholar
  108. 108.
    Wimer SM, Schoonover L, Garrison MW (1998) Levofloxacin: a therapeutic review. Clin Ther 20: 1049–1070.PubMedGoogle Scholar
  109. 109.
    Perry CM, Ormrod D, Hurst M, et al. (2002) Gatifloxacin: a review of its use in the management of bacterial infections. Drugs 62: 169–207.PubMedGoogle Scholar
  110. 110.
    Blondeau JM, Hansen GT (2001) Moxifloxacin: a review of the microbiological, pharmacological, clinical and safety features. Expert Opin Pharmacother 2: 317–335.PubMedGoogle Scholar
  111. 111.
    Powell DA, Nahata MC (1982) Chloramphenicol: new perspectives on an old drug. Drug Intell Clin Pharm 16: 295–300.PubMedGoogle Scholar
  112. 112.
    Yunis AA (1989) Chloramphenicol toxicity: 25 years of research. Am J Med 87: 44N - 48 N.PubMedGoogle Scholar
  113. 113.
    Klainer AS (1987) Clindamycin. Med Clin North Am 71: 1169–1175.Google Scholar
  114. 114.
    Cockerill FR, Edson RS (1991) Trimethoprim-sulfamethoxazole. Mayo Clin Proc 66: 1260–1269.PubMedGoogle Scholar
  115. 115.
    Foltzer MA, Reese RE (1987) Trimethoprim-sulfamethoxazole and other sulfonamides. Med Clin North Am 71: 1177–1194.PubMedGoogle Scholar
  116. 116.
    Smilack JD (1999) Trimethoprim-sulfamethoxazole. Mayo Clin Proc 74: 730–734.PubMedGoogle Scholar
  117. 117.
    Gordin FM, Simon GL, Wofsy CB, et al. (1984) Adverse reactions to trimethoprim-sulfamethoxazole in patients with the acquired immunodeficiency syndrome. Ann Intern Med 100: 495–499.PubMedGoogle Scholar
  118. 118.
    Gatermann S, Schulz E, Marre R (1989) The microbiological efficacy of the combination of fosfomycin and vancomycin against clinically relevant staphylococci. Infection 17: 35–37.PubMedGoogle Scholar
  119. 119.
    Wilkinson JD (1998) Fusidic acid in dermatology. Br J Dermatol 139 Suppl 53: 37–40.Google Scholar
  120. 120.
    Verbist L (1990) The antimicrobial activity of fusidic acid. J Antimicrob Chemother 25 Suppl B: 1–5.Google Scholar
  121. 121.
    Scully BE (1988) Metronidazole. Med Clin North Am 72: 613–621.Google Scholar
  122. 122.
    Lau AH, Lam NP, Piscitelli SC, et al. (1992) Clinical pharmacokinetics of metronidazole and other nitroimidazole anti-infectives. Clin Pharmacokinet 23: 328–364.PubMedGoogle Scholar
  123. 123.
    Rosenblatt JE, Edson RS (1987) Symposium on antimicrobial agents. Metronidazole. Mayo Clin Proc 62: 1013–1017.Google Scholar
  124. 124.
    Wilhelm MP (1991) Vancomycin. Mayo Clin Proc 66: 1165–1170.Google Scholar
  125. 125.
    Ellison MJ (1992) Vancomycin, metronidazole, and tetracyclines. Clin Podiatr Med Surg 9: 425–442.PubMedGoogle Scholar
  126. 126.
    Smyth EG, Pallett AP (1988) Vancomycin. Br J Hosp Med 39: 308–312.Google Scholar
  127. 127.
    Hermans PE, Wilhelm MP (1987) Vancomycin. Mayo Clin Proc 62: 901–905.Google Scholar
  128. 128.
    Matzke GR, Zhanel GG, Guay DR (1986) Clinical pharmacokinetics of vancomycin. Clin Pharmacokinet 11: 257–282.PubMedGoogle Scholar
  129. 129.
    Lake KD, Peterson CD (1988) Evaluation of a method for initiating vancomycin therapy: experience in 205 patients. Pharmacotherapy 8: 284–286.PubMedGoogle Scholar
  130. 130.
    Rybak MJ, Albrecht LM, Boike SC, et al. (1990) Nephrotoxicity of vancomycin, alone and with an aminoglycoside. J Antimicrob Chemother 25: 679–687.PubMedGoogle Scholar
  131. 131.
    Healy DP, Sahai JV, Fuller SH, et al. (1990) Vancomycin-induced histamine release and „red man syndrome“: comparison of 1- and 2-hour infusions. Antimicrob Agents Chemother 34: 550–554.PubMedGoogle Scholar
  132. 132.
    Eich G, Neftel KA (1991) Evaluation of hematologic side effects of anti-infective therapy: agranulocytosis caused by beta-lactam antibiotics, vancomycin and amodiaquine. Infection 19 Suppl 1: S33–37.Google Scholar
  133. 133.
    Campoli-Richards DM, Brogden RN, Faulds D (1990) Teicoplanin. A review of its antibacterial activity, pharmacokinetic properties and therapeutic potential [published erratum appears in Drugs 1991 May;41(5): 716]. Drugs 40: 449–486.Google Scholar
  134. 134.
    Outman WR, Nightingale CH, Sweeney KR, et al. (1990) Teicoplanin pharmacokinetics in healthy volunteers after administration of intravenous loading and maintenance doses. Antimicrob Agents Chemother 34: 2114–2117.PubMedGoogle Scholar
  135. 135.
    Rubinstein E, et al. (1997) Activity of quinupristin/dalfopristin against gram-positive bacteria: clinical applications and therapeutic potential. J Antimicrob Chemother. 39 Suppl A: 139–143. Review.Google Scholar
  136. 136.
    Bryson HM, et al. (1996) Quinupristin-dalfopristin. Drugs. 52: 406–415. Review.Google Scholar
  137. 137.
    Low DE (1995) Quinupristin/dalfopristin: spectrum of activity, pharmacokinetics, and initial clinical experience. Microb Drug Resist. 1: 223–234. Review.Google Scholar
  138. 138.
    Perry CM, Jarvis B (2001) Linezolid: a review of its use in the management of serious gram-positive infections. Drugs 61: 525–551.PubMedGoogle Scholar
  139. 1.
    Deutsches Zentralkomitee zur Bekämpfung der Tuberkulose. Richtlinien zur Chemotherapie der Tuberkulose. Revidierter Nachdruck (1995) aus: Pneumologie 1995; 49: 217–225.Google Scholar
  140. 2.
    Davidson PT, Quoc Le H. Drug treatment of tuberculosis–1992. Drugs 1992; 43: 651–673.Google Scholar
  141. 3.
    Holdiness MR. Clinical pharmacokinetics of the antituberculosis drugs: a review. Clin Pharmacokinet 1984; 9: 511–544.PubMedGoogle Scholar
  142. 4.
    Nariman S. Adverse reactions to drugs used in the treatment of tuberculosis. Adverse Drug React Acute Poisoning Rev 1988; 4: 207–227.Google Scholar
  143. 5.
    Steele MA, Des Prez RM. The role of pyrazinamide in tuberculosis chemotherapy. Chest 1988; 94: 845–850.PubMedGoogle Scholar
  144. 6.
    Wehrli W. Rifampicin: mechanism of action and resistance. Rev Infect Dis 1983; 5: S407 - S411.PubMedGoogle Scholar
  145. 7.
    Cunha BA. Aminoglycosides: current role in antimicrobial therapy. Pharmacotherapy 1988; 8: 334–350.PubMedGoogle Scholar
  146. 8.
    Jenner PJ, Ellard GA, Gruer PJK et al. A comparison of the blood levels and urinary excretion of ethionamide and prothionamide in man. J Antimicrobial Chemother 1984; 13: 267–277.Google Scholar
  147. 9.
    Girling DJ. Adverse effects of antituberculosis drugs. Drugs 1982; 23: 56–74.PubMedGoogle Scholar
  148. 10.
    Seaman JM, Goble M, Madsen L et al. Fasciitis and polyarthritis during antituberculosis therapy. Arthritis Rheum 1985; 28: 1179–1184.PubMedGoogle Scholar
  149. 11.
    Kropp R, Jungbluth H. Influence of capreomycin on renal function (preliminary results). Antibiot Chemother 1970; 16: 59–68.PubMedGoogle Scholar
  150. 12.
    Helmy B. Side effects of cycloserine. Scand Resp Dis 1970; 71: 220–225.Google Scholar
  151. 1.
    Warhurst DC: Chemotherapeutic agents and malaria research. In: Taylor AER, Muller R (eds). Chemotherapeutic agents in the study of parasites. Blackwell, Oxford, 1973, pp 1–28Google Scholar
  152. 2.
    Homewood CA,Warhurst DC, Peters W, et al.: Lysosomes, pH and the antimalarial action of cloroquine. Nature 1972; 235: 50–2PubMedGoogle Scholar
  153. 3.
    World Health Organization: Advances in malaria chemotherapy. WHO Technical report series no 711, World Health Organization, Geneva, 1984Google Scholar
  154. 4.
    Grewal RS: Pharmacology of 8-aminoquinolines. Bulletin of the World Health Organization 1981; 59: 397–406PubMedGoogle Scholar
  155. 5.
    Ahmad RA, Rogers HJ: Pharmacokinetics and protein binding interactions of dapsone and pyrimethamine. Brit J Clin Pharmacol 1980; 10: 519–24Google Scholar
  156. 6.
    Milton KA, Edwards G, Ward SA, et al.: Pharmacokinetics of halofantrine in man: effects of food and dose size. Brit J Clin Pharmacol 1989; 28: 71–7Google Scholar
  157. 7.
    Boots M, Phillips M, Curtis JR: Megaloblastic anaemia and pancytopenia due to proguanil in patients with chronical renal failure. Clin Nephrol 1982; 18: 106–8PubMedGoogle Scholar
  158. 1.
    Aboulker JP, Swart AM: Preliminary analysis of the Concorde trial. Correspondence. Lancet 1993; 341: 889–90Google Scholar
  159. 2.
    McGuirt PV, Furman PA: Acyclovir inhibition of viral DNA chain elongation in herpes simplex virus-infected cells. Am J Med 1982; 73 (1A): 67–71PubMedGoogle Scholar
  160. 3.
    Fletcher C, Sawchuk R, Chinnock B, et al.: Human pharmacokinetiks of the antiviral drug DHPG. Clin Pharmacol Ther 1986; 40: 281–6PubMedGoogle Scholar
  161. 4.
    Aoki FY, Sitar DA: Clinical pharmacokinetics of amantadine hydrochloride. Clin Pharmacokinet 1988; 14: 35–51PubMedGoogle Scholar
  162. 5.
    Pons JC, Boubon MC, Tauret Am, et al.: Fetoplacental passage of 2,3 -dideoxyinosine (letter). Lancet 1991; 337: 732PubMedGoogle Scholar
  163. 6.
    Jacobson MA, O’ Donnell JJ; Mills J: Foscarnet treatment of cytomegalyvirus retinitis in patients with the acquired immunodeficiency syndrome. Antimicrob Agents Chemother 1989; 33: 736–41PubMedGoogle Scholar
  164. 7.
    van Heeswijk RP, Veldkamp A, Mulder JW, et al. Combination of protease inhibitors for the treatment of HIV-1-infected patients: a review of pharmacokinetics and clinical experience. Antivir Ther 2001; 6: 201–9PubMedGoogle Scholar
  165. 1.
    Graham-Smith DG, Aronson JK (eds.): Oxford textbook of clinical pharmacology and drug therapy. Oxford University Press, Oxford, 1992Google Scholar
  166. 2.
    Gallis HA, Drew RH, Pickard WW: Amphotericin B: 30 years of clinical experience. Rev Infect Dis 1990; 12: 308–29PubMedGoogle Scholar
  167. 3.
    Daneshment TK, Warnock DW, Turner A, et al.: Pharmacokinetics of ketoconazol in normal subjects. J Antimicrob Chemother 1981; 8: 299–304Google Scholar
  168. 4.
    Briggs GG, Freeman RK, Yaffe SJ (eds.): Drugs in pregnancy & lactation: a reference guide to fetal & neonatal risk. Williams & Wilkins, Baltimore, 1990Google Scholar
  169. 5.
    Pasko MT, Piscitelli SC, Van Slooten AD: Fluconacole: a new triazole antifungal agent. DICP 1990; 24: 860–7PubMedGoogle Scholar
  170. 6.
    Fulten JE: Miconazole therapy for endemic fungal disease. Arch Derm 1975; 111: 596Google Scholar
  171. 7.
    Estrada RA. Itraconazole in pityriasis versicolor. Reviews of Infectious Diseases 9 (Suppl 1 ): 128–30Google Scholar
  172. 8.
    Sawyer PR, Brogden RN, Pinder RM, et al.: Clotrimazol: a review of its antifungal activity and therapeutic efficacy. Drugs 1975; 9: 424–47PubMedGoogle Scholar
  173. 9.
    Patzschke K, Ritter W, Seifert HM, et al.: Pharmacokinetic studies following systemic and topical administration of (14 C) bifonazole in man. Arzneimittelforsch 1983; 33: 745–50PubMedGoogle Scholar
  174. 1.
    Mandell WF, Neu HC: Parasitic infections: therapeutic considerations. Med Clin North Am 1988; 72: 669–90PubMedGoogle Scholar
  175. 2.
    Brugmans JP,.uenpont DC, Van Wigngaarden I, et al.: Mebendazole in enterobiasis. Radiochemical and pilot clinical study in 1278 subjects. JAMA 1971; 217: 313–6PubMedGoogle Scholar
  176. 3.
    Pax R, Benett JL, Fetterer R: A benzodiazepine derivate and praziquantel: effects on musculature of Schistosoma mansoni and Schistosoma japonicum. Naunyn Schmiedebergs Arch Pharmacol 1978; 304: 309–15PubMedGoogle Scholar
  177. 4.
    Hayes WJ Jr., Mattson AM, Gordon Short J, Witter RF: Safety of malathion dusting powder for louse control. Bulletin of the World Health Organization 1960; 22: 503–14PubMedGoogle Scholar
  178. 5.
    Leoung GS, Feigal DW, Montgomery AB, et al. and the San Francisco County Community Consortium: Aerosolized pentamidine for prophylaxis against Pneumocystis carinii pneumonia. New Engl J Med 1990; 323: 769–75PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • J. Fauler
  • U. Mai
  • M. Siepmann

There are no affiliations available

Personalised recommendations