Basistherapeutika und Immunsuppressiva

  • D. O. Stichtenoth

Zusammenfassung

Zur langfristigen Suppression der Krankheitsaktivität von entzündlichen Gelenkerkrankungen werden die sog. Basistherapeutika eingesetzt. Im Gegensatz zu der sofort einsetzenden antiphlogistischen Wirkung von Glukokortikoiden und nichtsteroidalen Antirheumatika ist der Wirkungseintritt der meisten Basistherapeutika erst nach etwa 3 Monaten zu erwarten (Wirklatenz, Tabelle 25.1). Bei hoher Krankheitsaktivität muss daher eine unmittelbar wirksame antiphlogistische Behandlung zusätzlich zur Basistherapie verordnet werden. Am besten untersucht ist die Anwendung der Basistherapeutika bei der rheumatoiden Arthritis [1]: In Studien über 6–12 Monate konnte die Wirksamkeit der Basistherapeutika im Hinblick auf die Rückbildung von Gelenkschwellungen, Schmerzen, Blutsenkungsgeschwindigkeit und C-reaktivem Protein nachgewiesen werden. Eine Hemmung der radiologisch erfassbaren Krankheitsprogression ist inzwischen für die meisten Basistherapeutika belegt, s. Tabelle 25.1. [2, 3]. Eine langfristige Remission der Erkrankung ist jedoch schwer zu erreichen. Ursache hierfür ist die hohe Therapieabbruchrate. Bei 90% der Patienten wird eine Basistherapie innerhalb von 3 Jahren wegen Unwirksam-keit, Wirkungsverlust, Toxizität oder fehlender Compliance beendet [4, 5]. Methotrexat, das derzeit wichtigste Basistherapeutikum, stellt diesbezüglich eine Ausnahme dar, mehr als 50% der Patienten setzen die Methotrexattherapie über 3 Jahre fort [2].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Cash JM, Klippel JH. Second-line drug therapy for rheumatoid arthritis. N Engl J Med 1994; 330: 1368–1375.PubMedGoogle Scholar
  2. 2.
    American College of Rheumatology Subcommittee on Rheumatoid Arthritis Guidelines. Guidelines for the management of rheumatoid arthritis–2002 Update. Arthritis Rheum 2002; 46: 328–346.Google Scholar
  3. 3.
    Rau R. Einfluss der parenteralen Goldbehandlung auf die radiologische Progression der chronischen Polyarthritis. Z Rheumatol 2001; 60: 177–179.Google Scholar
  4. 4.
    Thompson PW, Kirwan JR, Barnes CG. Practical results of treatment with dise ase-modifying antirheumatoid drugs. Br J Rheumatol 1985; 24: 167–175.PubMedGoogle Scholar
  5. 5.
    Wolfe F, Hawley DJ, Cathey MA. Termination of slow-acting antirheumatic the rapy in rheumatoid arthritis: a 14-year prospective evaluation of 1017 consecu tive starts. J Rheumatol 1990; 17: 994–1002.PubMedGoogle Scholar
  6. 6.
    Klippel JH. Biologic therapy for rheumatoid arthritis. N Engl J Med 2000; 343: 1640–1641.PubMedGoogle Scholar
  7. 7.
    Fuchs HA, Kaye JJ, Callahan LF et al. Evidence of significant radiologic erosions in rheumatoid arthritis within the first 2 years of disease. J Rheumatol 1989; 16: 585–591.PubMedGoogle Scholar
  8. 8.
    Pincus T, Callahan LF, Sale G et al. Severe functional declines, work disability, and increased mortality in 75 rheumatoid arthritis patients studied over 9 years. Arthritis Rheum 1984; 27: 864–872.PubMedGoogle Scholar
  9. 9.
    Verhoeven AC, Boers M, Tugwell P. Combination therapy in rheumatoid arthri-tis: Updated systematic review. Brit J Rheumatol 1998; 37: 612–619.Google Scholar
  10. 10.
    Egsmose C, Lund B, Borg G et al. Patients with rheumatoid arthritis benefit from early 2nd line therapy: 5 year follow-up of a prospective double blind placebo controlled study. J Rheumatol 1995; 22: 2208–13.PubMedGoogle Scholar
  11. 11.
    Möttönen T, Paimela L, Ahonen J, Helve T, Hannonen P, Leirisalo-Repo M. Outcome in patients with early rheumatoid arthritis treated according to the „sawtooth“ strategy. Arthritis Rheum 1996; 39: 996–1005.PubMedGoogle Scholar
  12. 12.
    Calgüneri M, Pay S, Caliskaner Z et al. Combination therapy versus monothera-py for the treatment of patients with rheumatoid arthritis. Clin Exp Rheumatol 1999; 17: 699–704.PubMedGoogle Scholar
  13. 13.
    Wollenhaupt J, Zeidler H. Behandlung der Rheumatoiden Arthritis mit Basistherapeutika-Kombinationen. Dt Ärztebl 2001; 98: A1196–1200.Google Scholar
  14. 14.
    Nell VPK, Machold KP, Eberl G, Uffmann M, Stamm T, Smolen JS. Benefit of very early referral and therapy with disease modifying antirheumatic drugs in patients with early rheumatoid arthritis. Ann Rheum Dis 2002; 61: Abstract OP0012.Google Scholar
  15. 15.
    Pirsch JD. Mycophenolate mofetil, tacrolimus, Neoral: from clinical trials to the clinic. Transplant Proc 1998; 30: 2223–2225.Google Scholar
  16. 16.
    Dunn CJ, Wagstaff AJ, Perry CM, Plosker GL, Goa KL. Cyclosporin: an updated review of the pharmacokinetic properties, clinical efficacy and tolerability of a microemulsion-based formulation (neoral) in organ transplantation. Drugs 2001; 61: 1957–2016.PubMedGoogle Scholar
  17. 17.
    Jacobsohn DA, Vogelsang GB. Novel pharmacotherapeutic approaches to prevention and treatment of GVHD. Drugs 2002; 62: 879–889.PubMedGoogle Scholar
  18. 18.
    Fries JF, Williams CA, Ramey D, Bloch D. The relative toxicity of disease-modiflying antirheumatic drugs. Arthritis Rheum 1993; 36: 297–306.PubMedGoogle Scholar
  19. 19.
    Mackenzie AH. Antimalarial drugs for rheumatoid arthritis. Am J Med 1983; 75: 48–58.PubMedGoogle Scholar
  20. 20.
    Reimann IW, Kemmler H, Boulat O et al. Chloroquin, Teil 1: Pharmakokinetik and Wirkungsmechanismen. Arzneimitteltherapie 1991; 7: 206–214.Google Scholar
  21. 21.
    Gustafsson LL, Lindström B, Grahnen A et al. Chloroquine excretion following malaria prophylaxis. Br J Clin Pharmacol 1987; 24: 221–224.PubMedGoogle Scholar
  22. 22.
    Salako LA, Walker O, Iyun AO. Pharmacokinetics of chloroquine in renal insufficiency. Afr J Med Sci 1984; 13: 177–182.Google Scholar
  23. 23.
    Akintonwa A, Odutola TA, Edeki T et al. Hemodialysis clearance of chloroquine in uremic patients. Ther Drug Monit 1986; 8: 285–287.PubMedGoogle Scholar
  24. 24.
    Reimann IW, Kemmler H, Boulat O et al. Chloroquin, Teil 2: Klinische Anwendung and Maßnahmen bei Überdosierung. Arzneimitteltherapie 1991; 8: 237–249.Google Scholar
  25. 25.
    Ette EI, Brown-Awala EA, Essien EE. Chloroquine elimination in humans: effect of low-dose cimetidine. J Clin Pharmacol 1987; 27: 813–816.PubMedGoogle Scholar
  26. 26.
    Ette EI, Brown-Awala A, Essien EE. Effect of ranitidine on chloroquine disposition. Drug Intell Clin Pharm 1987; 21: 732–734.PubMedGoogle Scholar
  27. 27.
    Achumba JI, Ette EI, Thomas WO et al. Chloroquine-induced acute dystonic reactions in the presence of metronidazole. Drug Intell Clin Pharm 1988; 22: 308–310.PubMedGoogle Scholar
  28. 28.
    McElnay JC, Mukhtar HA, D ‘Arcy PF et al. The effect of magnesium trisilicate and kaolin on the in vivo absorption of chloroquine. J Trop Med Hyg 1982; 85: 159–163.PubMedGoogle Scholar
  29. 29.
    Ali HM. Reduced ampicillin bioavailability following oral coadministration with chloroquine. J Antimicrob Chemother 1985; 15: 781–784.PubMedGoogle Scholar
  30. 30.
    Seideman P, Albertioni F, Beck O et al. Chloroquine reduces the bioavailability of methotrexate in patients with rheumatoid arthritis. Arthritis Rheum 1994; 37: 830–833.PubMedGoogle Scholar
  31. 31.
    Wolfe MS, Cordero JF. Safety of chloroquine in chemosuppression of malaria during pregnancy. Br Med J 1985; 290: 1466–1467.Google Scholar
  32. 32.
    Akintonwa A, Gbajumo SA, Biola Mabadeje AF. Placental and milk transfer of chloroquine in humans. Ther Drug Monit 1988; 10: 147–149.PubMedGoogle Scholar
  33. 33.
    Nation RL, Hackett LP, Dusci LJ et al. Excretion of hydroxychloroquine in human milk. Br J Clin Pharmacol 1984; 17: 368–369.PubMedGoogle Scholar
  34. 34.
    Hoult JR. Pharmacological and biochemical actions of sulphasalazine. Drugs 1986; 32 (Suppl. 1): 18–26.PubMedGoogle Scholar
  35. 35.
    Pullar T, Hunter JA, Capell HA. Which component of sulphasalazine is active in rheumatoid arthritis? Brit Med J 1985; 290: 1535–1538.Google Scholar
  36. 36.
    Klotz U. Clinical pharmacokinetics of sulphasalazine, its metabolites and other prodrugs of 5-aminosalicylic acid. Clin Pharmacokinet 1985; 10: 285–302.PubMedGoogle Scholar
  37. 37.
    Das KM, Eastwood MA. Acetylation polymorphism of sulphapyridine in patients with ulcerative colitis and Crohn’s disease. Clin Pharmacol Ther 1975;Google Scholar
  38. 18:.
  39. 38.
    Peppercorn MA. Sulphasalazine. Pharmacology, clinical use, toxicity, and related new drug development. Ann Int Med 1984; 101: 377–386.PubMedGoogle Scholar
  40. 39.
    Amos RS, Pullar T, Bax DE et al. Sulphasalazine for rheumatoid arthritis: toxicity in 774 patients monitored for one to 11 years. Brit Med J 1986; 293: 420–423.Google Scholar
  41. 40.
    Farr M, Scott DGI, Bacon PA. Side effect profile of 200 patients with inflammatory arthritis treated with sulphasalazine. Drugs 1986 (Suppl. 1 ): 49–53.Google Scholar
  42. 41.
    Shaffer JL, Houston JB. The effect of rifampicin on sulphapyridine plasma concentrations following sulphasalazine administration. Br J Clin Pharmacol 1985;Google Scholar
  43. 19:.
  44. 42.
    Juhl RP, Summers RW, Guillory JK et al. Effect of sulfasalazine on digoxin bioavailability. Clin Pharmacol Ther 1976; 20: 387–394.PubMedGoogle Scholar
  45. 43.
    Goldman P, Peppercorn MA. Drug therapy; sulphasalazine. N Engl J Med 1975; 293: 20–23.PubMedGoogle Scholar
  46. 44.
    Fachinformation Pleon® RA; Henning Berlin/Sanofi-Synthelabo. Fachinfo CD, BPI Service GmbH 2002.Google Scholar
  47. 45.
    Khan AK, Truelove SC. Placental and mammary transfer of sulphasalazine. Br Med J 1979; 2: 1553.PubMedGoogle Scholar
  48. 46.
    Mogadam M, Dobbins WO, Korelitz BI et al. Pregnancy in inflammatory bowel disease: effect of sulfasalazine and corticosteroids on fetal outcome. Gastroenterology 1981; 80: 72–76.PubMedGoogle Scholar
  49. 47.
    Jarnerot G, Into-Malmberg MB. Sulphasalazine treatment during breast feeding. Scand J Gastroenterol 1979; 14: 869–871.PubMedGoogle Scholar
  50. 48.
    Chaffman M, Brogden RN, Heel RC et al. Auranofin. A preliminary review of its pharmacological properties and therapeutic use in rheumatoid arthritis. Drugs 1984; 27: 378–424.PubMedGoogle Scholar
  51. 49.
    Giannini EH, Brewer EJ, Person DA et al. Longterm auranofin therapy in patients with juvenile rheumatoid arthritis. J Rheumatol 1986; 13: 768–770.PubMedGoogle Scholar
  52. 50.
    Giannini EH, Brewer EJ Jr, Kuzmina N et al. Auranofin in the treatment of juvenile rheumatoid arthritis. Arthritis Rheum 1990; 33: 466–476.PubMedGoogle Scholar
  53. 51.
    Blocka KL, Paulus HE, Furst DE. Clinical pharmacokinetics of oral and injectable gold compounds. Clin Pharmacokinet 1986; 11: 133–143.PubMedGoogle Scholar
  54. 52.
    Graninger W, Seidl G, Kovarik J et al. Oral gold therapy in a patient with rheumatoid arthritis and preexisting uremia. Arthritis Rheum 1985; 28: 710–712.PubMedGoogle Scholar
  55. 53.
    Mathieu A, Pale R, Altieri P et al. Oral chrysotherapy in a hemodialyzed rheumatoid patient. J Rheumatol 1985; 12: 380–381.PubMedGoogle Scholar
  56. 54.
    Tozman EC, Gottlieb NL. Adverse reactions with oral and parenteral gold preparations. Med Toxicol 1987; 2: 177–189.PubMedGoogle Scholar
  57. 55.
    Proudman SM, Cleland LG. Auranofin-induced vasomotor reaction. Arthritis Rheum 1992; 35: 1452–1454.PubMedGoogle Scholar
  58. 56.
    Fachinformation Ridaurc®; Yamanouchi. Fachinfo CD, BPI Service GmbH 2002.Google Scholar
  59. 57.
    England JM, Smith DS. Gold-induced thrombocytopenia and response to dimercaprol. Br Med J 1972; 2: 748–749.PubMedGoogle Scholar
  60. 58.
    Davis P, Barraclough D. Interaction of D-penicillamine with gold salts: in vivo studies on gold chelation and in vitro studies on protein binding. Arthritis Rheum 1977; 20: 1413–1418.PubMedGoogle Scholar
  61. 59.
    Lorker A, Baumgartner WA, Bovy RA et al. Clinical application for heavy metal complexing potential of N-acetylcysteine. J Clin Pharmacol 1973; 13: 332–336.Google Scholar
  62. 60.
    Walz DT, DiMartino MJ, Griswold DE et al. Biologic actions and pharmacokinetic studies of auranofin. Am J Med 1983; 75: 90–108.PubMedGoogle Scholar
  63. 61.
    Wassenberg S. Klinische Wirksamkeit, Verträglichkeit and Überwachung der parenteralen Goldtherapie. Z Rheumatol 2001; 60: 180–183.Google Scholar
  64. 62.
    Burmester G-R. Molekulare Wirkungsmechanismen von Gold bei der Behandlung der rheumatoiden Arthritis–ein Update. Z Rheumatol 2001; 60: 167–173.PubMedGoogle Scholar
  65. 63.
    Danpure C, Fyfe DA, Gumpel JM. Distribution of gold among plasma fractions in rheumatoid patients undergoing chrysotherapy compared with its distribution in plasma incubated with aurothiomalate in vitro. Ann Rheum Dis 1979; 38: 364–370.PubMedGoogle Scholar
  66. 64.
    Gottlieb NL, Smith PM, Smith EM. Gold excretion correlated with clinical course during chrysotherapy in rheumatoid arthritis. Arthritis Rheum 1972; 15: 582–591.PubMedGoogle Scholar
  67. 65.
    Rogers JG, Anderson RM, Chow CW et al. Possible teratogenic effects of gold. Aust Paediatr J 1980; 16: 194–195.PubMedGoogle Scholar
  68. 66.
    Rocker I, Henderson WJ. Transfer of gold from mother to fetus. Lancet 1976; 2: 1246.PubMedGoogle Scholar
  69. 67.
    Bennett PN, Humphries SJ, Osborne JP et al. Use of sodium aurothiomalate during lactation. Br J Clin Pharmacol 1990; 29: 777–779.PubMedGoogle Scholar
  70. 68.
    Cohen DL, Orzel J, Taylor A. Infants of mothers receiving gold therapy. Arthritis Rheum 1981; 24: 104–105.PubMedGoogle Scholar
  71. 69.
    Rooney TW, Lorber A, Veng-Pedersen P et al. Gold pharmacokinetics in breast milk and serum of a lactating woman. J Rheumatol 1987; 14: 1120–1122.PubMedGoogle Scholar
  72. 70.
    Suarez-Almazor ME, Spooner C, Belseck E. Penicillamine for treating rheumatoid arthritis. Cochrane Database Syst Rev 2000; 4: CD001460.Google Scholar
  73. 71.
    Furst DE, Clements PJ. D-penicillamine is not an effective treatment in systemic sclerosis. Scand J Rheumatol 2001; 30: 189–191.PubMedGoogle Scholar
  74. 72.
    Munro R, Capell HA. Penicillamine. Brit J Rheumatol 1997; 36: 104–109.Google Scholar
  75. 73.
    Wiesner RH, Dickson ER, Carlson GL et al. The pharmacokinetics of D-penicillamine in man. J Rheumatol 1981; 8 (Suppl. 7): 51–55.Google Scholar
  76. 74.
    Bergstrom RF, Kay DR, Harkcom TM et al. Penicillamine kinetics in normal subjects. Clin Pharmcol Ther 1981; 30: 404–413.Google Scholar
  77. 75.
    Muijsers AO, Van de Stadt RJ, Henrichs AM. D-penicitlamine in patients with rheumatoid arthritis. Serum levels, pharmacokinetic aspects, and correlation with clinical course and side effects. Arthritis Rheum 1984; 27: 1362–1369.PubMedGoogle Scholar
  78. 76.
    Crawhall JC. Proteinuria in D-penicillamine-treated rheumatoid arthritis. J Rheumatol 1981; 8 (Suppl. 7): 161–163.Google Scholar
  79. 77.
    Howard-Lock HE, Lock CJ, Mewa A et al. D-penicillamine: chemistry and clinical use in rheumatic diseases. Semin Arthritis Rheum 1986; 15: 261–281.PubMedGoogle Scholar
  80. 78.
    Moezzi B, Fatourechi V, Khozain R et al. The effect of penicillamine on serum digoxin levels. Jpn Heart J 1978; 19: 366–375.PubMedGoogle Scholar
  81. 79.
    Osman MA, Patel RB, Schuna A et al. Reduction in oral penicillamine absorption by food, antacid, and ferrous sulphate. Clin Pharmacol Ther 1983; 33: 465–470.PubMedGoogle Scholar
  82. 80.
    Ifan A, Welling PG. Pharmacokinetics of oral 500 mg penicillamine: effects of antacids on absorption. Biopharm Drug Dispos 1986; 7: 401–405.PubMedGoogle Scholar
  83. 81.
    Elling P, Elling H. Penicillamine, captopril, and hypoglycemia. Ann Intern Med 1985; 103: 644–645.PubMedGoogle Scholar
  84. 82.
    Goldberg IJ, Lawton K, Redding JR et al. Influence of previous gold toxicity on subsequent development of penicillamine toxicity. Br Med J 1982; 285: 1659.Google Scholar
  85. 83.
    Dodd MJ, Griffiths ID, Thompson M. Adverse reactions to D-penicillamine after gold toxicity. Br Med J 1980; 280: 1498–1500.PubMedGoogle Scholar
  86. 84.
    Rosa FW. Teratogen update: penicillamine. Teratology 1986; 33: 127–131.PubMedGoogle Scholar
  87. 85.
    Endres W. D-penicillamine in pregnancy–to ban or not to ban? Klin Wochenschr 1981; 59: 535–537.PubMedGoogle Scholar
  88. 86.
    Schuna A, Osman MA, Patel RB et al. Influence of food on the bioavailability of penicillamine. J Rheumatol 1983; 10: 95–97.PubMedGoogle Scholar
  89. 87.
    Bell CL, Graziano FM. The safety of administration of penicillamine to penicillin-sensitive individuals. Arthritis Rheum 1983; 26: 801–803.PubMedGoogle Scholar
  90. 88.
    Choi HK, Hernân MA, Seeger JD, Robins JM, Wolfe F. Methotrexate and mortality in patients with rheumatoid arthritis: a prospective study. Lancet 2002; 359: 1173–1177.PubMedGoogle Scholar
  91. 89.
    Furst DE, Haub R, Faulkner R et al. Pharmacokinetics of low dose methotrexate in rheumatoid arthritis. Clin Pharmacol Ther 1986; 39: 193.Google Scholar
  92. 90.
    Jacobs SA, Derr CJ, Johns DG. Accumulation of methotrexate diglutamate in human liver during methotrexate therapy. Biochem Pharmacol 1977; 26: 2310–2313.PubMedGoogle Scholar
  93. 91.
    Seideman P, Beck O, Eksborg S et al. The pharmacokinetics of methotrexate and its 7-hydroxy metabolite in patients with rheumatoid arthritis. Br J Clin Pharmacol 1993; 35: 409–412.PubMedGoogle Scholar
  94. 92.
    Edelman J, Biggs DF, Jamali F et al. Low-dose methotrexate kinetics in arthritis. Clin Pharmacol Ther 1984; 35: 382–386.PubMedGoogle Scholar
  95. 93.
    Campbell MA, Perrier DG, Dorr RT et al. Methotrexate: bioavailability and pharmacokinetics. Cancer Treat Rep 1985; 69: 833–838.PubMedGoogle Scholar
  96. 94.
    Evans WE, Pratt CB. Effect of pleural effusion on high-dose methotrexate kinetics. Clin Pharmacol Ther 1979; 24: 68–72.Google Scholar
  97. 95.
    Segal AM, Wilke WS. Toxicity of low-dose methotrexate in rheumatoid arthritis. In: Wilke WS (Hrsg.). Methotrexate therapy in rheumatic disease. New York. Dekker. 1989: S. 147–178.Google Scholar
  98. 96.
    Evans WE, Christensen ML. Drug interactions with methotrexate. J Rheumatol 1985; 12 (Suppl. 12): 15–20.Google Scholar
  99. 97.
    Maricic M, Davis M, Gall EP. Megaloblastic pancytopenia in a patient receiving concurrent methotrexate and trimethoprim-sulfamethoxazole treatment. Arthritis Rheum 1986; 29: 133–135.PubMedGoogle Scholar
  100. 98.
    Milunsky A, Graef JW, Gaynor MF Jr. Methotrexate-induced congenital malformations. J Pediatr 1968; 72: 790–795.PubMedGoogle Scholar
  101. 99.
    Johns DG, Rutherford LD, Keighton PC et al. Secretion of methotrexate into human milk. Am J Obstet Gynecol 1972; 112: 978–980.PubMedGoogle Scholar
  102. 100.
    Ortiz Z, Shea B, Suarez-Almazor ME, Moher D, Wells GA, Tugwell P. The efficacy of folic acid and folinic acid in reducing methotrexate gastrointestinal toxicity in rheumatoid arthritis. A metaanalysis of randomized controlled trials. J Rheumatol 1998; 25: 36–43.PubMedGoogle Scholar
  103. 101.
    Morgan SL, Alarcon GS, Krumdieck CL. Folic acid supplementation during methotrexate therapy: it makes sense. J Rheumatol 1993; 20: 929–930.PubMedGoogle Scholar
  104. 102.
    Morgan SL, Baggott JE, Lee JY, Alarcon GS. Folic acid supplementation prevents deficient blood folate levels and hyperhomocysteinemia during long-term, low dose methotrexate therapy for rheumatoid arthritis: Implications for cardiovascular disease prevention. J Rheumatol 1998; 25: 441–446.PubMedGoogle Scholar
  105. 103.
    Gaffney K, Scott DGI. Azathioprine and cyclophosphamide in the treatment of rheumatoid arthritis. Brit J Rheumatol 1998; 37: 824–836.Google Scholar
  106. 104.
    Fachinformation Azathioprin-ratiopharm®; ratiopharm. Fachinfo CD, BPI Service GmbH 2002.Google Scholar
  107. 105.
    Chan GL, Erdmann GR, Gruber SA et al. Azathioprine metabolism: pharmacokinetics of 6-mercaptopurine, 6-thiouric acid and 6-thioguanine nucleotides in renal transplant patients. J Clin Pharmacol 1990; 30: 358–363.PubMedGoogle Scholar
  108. 106.
    Ohlman S, Albertioni F, Peterson C. Day-to-day variability in azathioprine pharmacokinetics in renal transplant recipients. Clin Transplant 1994; 8: 217–223.PubMedGoogle Scholar
  109. 107.
    Bach J-F, Dardenne M. The metabolism of azathioprine in renal failure. Transplantation 1971; 12: 253–259.PubMedGoogle Scholar
  110. 108.
    Lawson DH, Lovatt GE, Gurton CS et al. Adverse effects of azathioprine. Adverse Drug React Acute Poisoning Rev 1984; 3: 161–171.PubMedGoogle Scholar
  111. 109.
    Silman AJ, Petrie J, Hazleman B et al. Lymphoproliferative cancer and other malignancy in patients with rheumatoid arthritis treated with azathioprine: a 20 year follow up study. Ann Rheum Dis 1988; 47: 988–992.PubMedGoogle Scholar
  112. 110.
    Rundles RW, Wyngaarden JB, Hutchings GH et al. Effects of a xanthine oxidase inhibitor on thiopurine metabolism, hyperuricemia and gout. Trans Assoc Am Physicians 1963; 76: 126–140.Google Scholar
  113. 111.
    Singleton JD, Conyers L. Warfarin and azathioprine: an important drug interaction. Am J Med 1992; 92: 217.PubMedGoogle Scholar
  114. 112.
    The registration committee of the European dialysis and transplant association. Successful pregnancies in women treated by dialysis and kidney transplantation. Br J Obstet Gynaecol 1980; 87: 839–845.Google Scholar
  115. 113.
    Voogd CE. Azathioprine, a genotoxic agent to be considered non-genotoxic in man. Mutat Res 1989; 221: 133–52.PubMedGoogle Scholar
  116. 114.
    Coulam CB, Moyer TP, Jiang N-S et al. Breast-feeding after renal transplantation. Transplant Proc 1982; 13: 605–609.Google Scholar
  117. 115.
    Bathon JM, Martin RW, Fleischmann RM, Tesser JR, Schiff MH, Keystone MC et al. A comparison of etanercept and methotrexate in patients with early rheumatoid arthritis. N Engl J Med 2000; 343: 1586–1593.PubMedGoogle Scholar
  118. 116.
    Lipsky PE, van der Heijde DM, St. Clair EW, Kalden J, Weisman M et al. Infliximab and methotrexate in the treatment of rheumatoid arthritis. N Engl J Med 2000; 343: 1594–1602.PubMedGoogle Scholar
  119. 117.
    Hanauer SB, Feagan BG, Lichtenstein GR et al. Maintenance infliximab for Crohn’s disease: the ACCENT I randomised trial. Lancet 2002; 359: 1541–1549.PubMedGoogle Scholar
  120. 118.
    Gorman JD, Sack KE, Davis JC. Treatment of ankylosing spondylitis by inhibition of tumor necrosis factor a. N Engl J Med 2002; 346: 1349–1356.PubMedGoogle Scholar
  121. 119.
    Braun J, Brandt J, Listing J, Zink A et al. Treatment of ankylosing spondylitis with infliximab: a randomised controlled multicentre trial. Lancet 2002; 359: 1187–1193.PubMedGoogle Scholar
  122. 120.
    Jarvis B, Faulds D. Etanercept. Drugs 1999; 57: 945–966.Google Scholar
  123. 121.
    Fachinformation Remicade®; Centocor/Essex Pharma. Fachinfo CD, BPI Service GmbH 2002.Google Scholar
  124. 122.
    Kalden JR, Lorenz H-M. Rheumatoide Arthritis - Blockade des Tumor-NekroseFaktor-a als therapeutisches Prinizip. Dt Ärztebl 2001; 98: A1059 - A1063.Google Scholar
  125. 123.
    Davis JP, Cain GA, Pitts WJ et al. The immunosuppressive metabolite of leflunomide is a potent inhibitor of human dihydroorotate dehydrogenase. Biochemistry 1996; 35: 1270–1273.PubMedGoogle Scholar
  126. 124.
    Reinhold-Keller E, Groß WL. Leflunomid zur Behandlung der rheumatoiden Arthritis. Dt Ärztebl 2001; 98: A1881 - A1887.Google Scholar
  127. 125.
    Rozman B. Clinical pharmacokinetics of leflunomide. Clin Pharmacokinet 2002; 41: 421–430.PubMedGoogle Scholar
  128. 126.
    Fachinformation Arava®; Aventis. Fachinfo CD, BPI Service GmbH 2002.Google Scholar
  129. 127.
    Anonymus. Arzneitelegramm 2001; 32: 48.Google Scholar
  130. 128.
    Bresnihan B, Alvaro-Gracia JM, Cobby M et al. Treatment of rheumatoid arthritis with recombinant human interleukin-1 receptor antagonist. Arthritis Rheum 1998; 41: 2196–2204.PubMedGoogle Scholar
  131. 129.
    Jiang Y, Genant HK, Watt I et al. A multicenter, double-blind, dose-ranging, randomized, plaecebo-controlled study of recombinant human interleukin-1 receptor antagonist in patients with rheumatoid arthritis: radiologic progression and correlation of Genant and Larsen scores. Arthritis Rheum 2000; 43: 1001–1009.PubMedGoogle Scholar
  132. 130.
    Cohen S, Hurd E, Cush J et al. Treatment of rheumatoid arthritis with anakinra, a recombinant human interleukin-1 receptor antagonist, in combination with methotrexate: results of a twenty-four-week, multicenter, randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 2002; 46: 614–624.PubMedGoogle Scholar
  133. 131.
    Campion GV, Lebsack ME, Lookabaugh J et al: Dose-range and dose-frequency study of recombinant human interleukin-1 receptor antagonist in patients with rheumatoid arthritis. Arthritis Rheum 1996; 39: 1092–1101.PubMedGoogle Scholar
  134. 132.
    Fachinformation Kineret®; Aventis. Fachinfo CD, BPI Service GmbH 2002.Google Scholar
  135. 133.
    Allison AC, Eugui EM. Mycophenolate mofetil, a rationally designed immunosuppressive drug. Clin Transplant 1993; 7: 96–112.Google Scholar
  136. 134.
    Halloran PF. Molecular mechanisms of new immunosuppressants. Clin Transplant 1996; 10: 118–23.PubMedGoogle Scholar
  137. 135.
    Schnulle P, van der Woude FJ. Mycophenolat Mofetil im Vergleich zu anderen Immunsuppressiva. Internist 1998; 39: 879–886.PubMedGoogle Scholar
  138. 136.
    Bullingham RE, Nicholls A, Hale M. Pharmacokinetics of oral mycophenolate mofetil (RS 61443)–A short review. Transplant Proc 1996; 28: 925–9.PubMedGoogle Scholar
  139. 137.
    Pichlmayr R for the European Mycophenol Mofetil Cooperative Study Group. Mycophenolate mofetil for the prevention of acute rejection in primary cadaveric renal allograft recipients. Transplantation 1995; 60: 225–232.Google Scholar
  140. 138.
    Fachinformation CellCept®. Roche. Fachinfo CD, BPI Service GmbH 2002.Google Scholar
  141. 139.
    Halloran PF, Mathew T, Tomlanovich S et al. Mycophenolate mofetil in renal allograft recipients: a pooled efficacy analysis of three randomized, double blind, clinical studies in prevention of rejection. Transplantation 1997; 63: 39–47.PubMedGoogle Scholar
  142. 140.
    Mignat C. Clinically significant drug interactions with new immunosuppressive agents. Drug Saf 1997; 16: 267–278.PubMedGoogle Scholar
  143. 141.
    Jacobs F, Mamzer-Bruneel MF, Skhiri H, Thervet E, Legendre C, Kreis H. Safety of the mycophenolate mofetil-allopurinol combination in kidney transplant recipients with gout. Transplantation 1997; 64: 1087–1088.PubMedGoogle Scholar
  144. 142.
    Yocum D: Immunological actions of cyclosporin A in rheumatoid arthritis. Br J Rheumatol 1993; 32 (suppl. 1): 38–41.PubMedGoogle Scholar
  145. 143.
    Fruman D, Burakoff S, Bierer B. Immunophilins in protein folding and immunosuppression. FASEB J 1994; 8: 391–400.PubMedGoogle Scholar
  146. 144.
    Dougados M, Torley H: Efficacy of cyclosporin A in rheumatoid arthritis: worldwide experience. Br J Rheumatol 1993; 32 (suppl. 1): 57–59.PubMedGoogle Scholar
  147. 145.
    Zeidler HK, Kvien TK, Hannonen P et al. Progression of joint damage in early active severe rheumatoid arthritis during 18 months of treatment: comparison of low-dose cyclosporin and parenteral gold. Brit J Rheumatol 1998; 37: 874–882.Google Scholar
  148. 146.
    Pistoia V, Buoncompagni A, Scribanis R et al. Cyclosporin A in the treatment of juvenile chronic arthritis and childhood polymyositis-dermatomyositis. Results of a preliminary study. Clin Exp Rheumatol 1993; 11: 203–208.PubMedGoogle Scholar
  149. 147.
    Ptachcinski RJ, Venkataramanan R, Burckart GJ: Clinical pharmacokinetics of cyclosporin. Clin Pharmacokinet 1986; 11: 107–132.PubMedGoogle Scholar
  150. 148.
    Van den Borne BE, Landewé RB, Goei The HS, Mattie H, Breedveld FC, Dijkmans BA: Relative bioavailability of a new oral form of cyclosporin A in patients with rheumatoid arthritis. Br J Clin Pharmac 1995; 39: 172–175.Google Scholar
  151. 149.
    Yatscoff RW, Rosano T, Bowers LD: The clinical significance of cyclosporine metabolites. Clin Biochem 1991; 24: 23–35.PubMedGoogle Scholar
  152. 150.
    Kahan BD. Cyclosporine. N Engl J Med 1989; 321: 1725–1738.PubMedGoogle Scholar
  153. 151.
    Yee GC, McGuire TR: Pharmokinetic drug interactions with cyclosporin (2 parts). Clin Pharmacokinet 1990; 19: 319–332, 400–415.Google Scholar
  154. 152.
    Berg KJ, Form 0, Djoseland O, Mikkelsen M, Narverud J, Rugstad HE: Renal side effects of high and low cyclosporin A doses in patients with rheumatoid arthritis. Clin Nephrol 1989; 31: 232–238.PubMedGoogle Scholar
  155. 153.
    Al-Khader AA, Absy M, Al-Hasani MK et al.: Successful pregnancy in renal transplant recipients treated with cyclosporine. Transplantation 1988; 45: 987–988.PubMedGoogle Scholar
  156. 154.
    Gelman CR, Rumack BH, Hess AJ (eds.): Cyclosporine A. In: Drugdex® System. Micromedex Inc., Englewood, Colorado, USA 2002.Google Scholar
  157. 155.
    Hollander AA, van Rooij J, Lentjes EG et al.: The effect of grapefruit juice on cyclosporine and prednisone metabolism in transplant patients. Clin Pharmacol Ther 1995; 57: 318–324.PubMedGoogle Scholar
  158. 156.
    Yoshimura N, Oka T. FK 506, a new immunosuppressive agent: a review. J Immunol Immunopharmacol 1990; 10: 32–36.Google Scholar
  159. 157.
    Venkataramanan R, Jain E, Cadoff E et al. Pharmacokinetics of FK 506: preclinical and clinical studies. Transplant Proc 1990; 22 (Suppl. 1): 52–56.PubMedGoogle Scholar
  160. 158.
    Jain AB, Venkataramanan R, Cadoff E et al. Effect of hepatic dysfunction and T tube clamping on FK 506 pharmacokinetics and through concentrations. Transplant Proc 1990; 22 (Suppl. 1): 52–56.PubMedGoogle Scholar
  161. 159.
    Fachinformation Prograf®; Fujisawa. Fachinfo CD, BPI Service GmbH 2002.Google Scholar
  162. 160.
    Small SL, Fukui MB, Bramblett GT et al. Immunosuppression-induced leukoencephalopathy from tacrolimus (FK506). Ann Neurol 1996; 40: 575–580.PubMedGoogle Scholar
  163. 161.
    Fung JJ, Abu-Elmagd K, Todo S et al. FK 506 in clinical organ transplantation. Clin Transplant 1991; 5: 517–22.Google Scholar
  164. 162.
    Farley DE, Shelby J, Alexander D, Scott JR. The effect of two new immunosup-pressive agents, FK 506 and didemnin B, in murine pregnancy. Transplantation 1991; 52: 106–10.PubMedGoogle Scholar
  165. 163.
    Saegusa T, Ohara K, Noguchi H. Reproductive and developmental studies of tacrolimus (FK 506) in rats and rabbits. Kiso TO Rinsho 1992; 26: 159–171.Google Scholar
  166. 164.
    Jain A, Venkataramanan R, Lever J et al. FK 506 and pregnancy in liver transplant patients. Transplantation 1993; 56: 1588–1589.PubMedGoogle Scholar
  167. 165.
    Winkler ME, Niesert S, Ringe B, Pichlmayr R. Successful pregnancy in a patient after liver transplantation maintained on FK 506. Transplantation 1993; 56: 1589–1590.PubMedGoogle Scholar
  168. 166.
    Ingle GR, Sievers TM, Holt CD. Sirolimus: continuing the evolution of transplant immunosuppression. Ann Pharmacother 2000; 34: 1044–1055.PubMedGoogle Scholar
  169. 167.
    Fachinformation Rapamune®; Wyeth. Fachinfo CD, BPI Service GmbH 2002.Google Scholar
  170. 168.
    Lake KD. Immunosuppressive drugs and novel strategies to prevent acute and chronic allograft rejection. Sem Respir Crit Care Med 2001; 22: 559–580.Google Scholar
  171. 169.
    Zimmerman JJ, Kahan BD: Pharmacokinetics of sirolimus in stable renal transplant patients after multiple oral dose administration. J Clin Pharmacol 1997; 37: 405–415.PubMedGoogle Scholar
  172. 170.
    Yatscoff. Pharmacokinetics of rapamycin. Transplant Porc 1996; 28: 970–973.Google Scholar
  173. 171.
    MacDonald AS, Sindhi R, Mathew T et al. A worldwide, phase III, randomized, controlled, safety and efficacy study of a sirolimus/cyclosporine regimen for prevention of acute rejection in recipients of primary mismatched renal allo-grafts. Transplantation 2001; 71: 271–280.PubMedGoogle Scholar
  174. 172.
    Singer SJ, Tiernan R, Sullivan EJ. Interstitiell pneumonitis associated with siro-limus therapy in renal-transplant recipients. N Engl J Med 2000; 343: 1815–1816.PubMedGoogle Scholar
  175. 173.
    Kaplan B, Meier-Kriesche HU, Napoli KL et al. The effects of relative timing of sirolimus and cyclosporine microemulsion formulation coadministration on the pharmacokinetics of each agent. Clin Pharmacol Ther 1998; 63: 48–53.PubMedGoogle Scholar
  176. 174.
    Austin HA, Klippel JH, Balow JE et al. Therapy of lupus nephritis: controlled trial of prednisone and cytotoxic drugs. N Engl J Med 1986; 314: 614–619.PubMedGoogle Scholar
  177. 175.
    Baltus JA, Boersma JW, Hartman AP et al. The occurence of malignancies in patients with rheumatoid arthritis treated with cyclophosphamide: a controlled retrospective follow up. Ann Rheum Dis 1983; 42: 368–373.PubMedGoogle Scholar
  178. 176.
    Baker GL, Kahl LE, Zee BC et al. Malignancy following treatment of rheumatoid arthritis with cyclophosphamide–long-term case-control follow-up study. Am J Med 1983; 83: 1–9.Google Scholar
  179. 177.
    Kirshon B, Wasserstrum N, Willis R et al. Teratogenic effects of first-trimester cyclophosphamide therapy. Obstet Gynecol 1988; 72: 462–464.PubMedGoogle Scholar
  180. 178.
    Wiernik PH, Duncan JH. Cyclophosphamide in human milk. Lancet 1971; 1: 912.PubMedGoogle Scholar
  181. 179.
    Cannon GW, Jackson CG, Samuelson CO et al. Chlorambucil therapy in rheu-matoid arthritis: clinical experience in 28 patients and literature review. Semin Arthritis Rheum 1985; 15: 106–118.PubMedGoogle Scholar
  182. 180.
    Kaktamani VG, Kaklamanis PG. Treatment of Behcet’s disease–an update. Semin Arthritis Rheum 2001, 30: 299–312.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • D. O. Stichtenoth

There are no affiliations available

Personalised recommendations