Skip to main content

Approaches to Modeling Population Viability in Plants: An Overview

  • Chapter

Part of the book series: Ecological Studies ((ECOLSTUD,volume 165))

Abstract

Population modeling, and especially the concept of population viability analysis (PVA), has played a fundamental role in the development of conservation biology as a discipline (Chap. 1, this Vol.). Early applications of PVA largely focused on the use of demographic models to identify minimum viable population sizes, but the term has since broadened to encompass a much wider range of approaches (Beissinger and Westphal 1998; Chaps. 6,9, this Vol.). Typically, PVA involves the development of models to address questions about the extinction risks facing one or more populations or to explore the factors influencing population persistence. What role PVA can or should play in conservation and management is a question that continues to stimulate a great deal of debate. Some authors argue that PVA is an effective and important conservation tool (Schemske et al. 1994; Brook et al. 2000), while others caution that PVA methods can be easily misused or may provide unreliable guidance to managers (Beissinger and Westphal 1998). In spite of this debate, there is no question that both the number of PVA approaches available to practitioners and their application to conservation problems is growing rapidly.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barrett SCH, Kohn JR (1991) Genetic and evolutionary consequences of small population size in plants: implications for conservation. In: Falk DA, Holsinger KE (eds) Genetics and conservation of rare plants. Oxford University Press, Oxford, pp 3–30

    Google Scholar 

  • Beissinger SR, Westphal MI (1998) On the use of demographic models of population viability in endangered species management. J Wildl Manage 62:821–841

    Article  Google Scholar 

  • Benton TG, Grant A, Clutton-Brock TH (1995) Does environmental stochasticity matter: analysis of red deer life-histories on Rum. Evol Ecol 9:559–574

    Article  Google Scholar 

  • Bierzychudek P (1982) The demography of jack-in-the-pulpit, a forest perennial that changes sex. Ecol Monogr 52: 335–351

    Article  Google Scholar 

  • Bierzychudek P (1999) Looking backwards: assessing projections of a transition matrix model. Ecol Appl 9:1278–1287

    Article  Google Scholar 

  • Brook BW, O’Grady JJ, Chapman AP, Burgman MA, Akcakaya HR, Frankham R (2000) Predictive accuracy of population viability analysis in conservation biology. Nature 404:385–387

    Article  PubMed  CAS  Google Scholar 

  • Brook BW, Lim L, Harden R, Frankham R (1997) Does population viability analysis software predict the behaviour of real populations? A retrospective study on the Lord Howe Island Woodhen (Tricholimnas sylvestris (Sclater). Biol Conserv 82:119–128

    Article  Google Scholar 

  • Burgman MA, Lamont BB (1992) A stochastic model for the viability of Banksia cuneata populations: environmental, demographic, and genetic effects. J Appl Ecol 29:719–727

    Article  Google Scholar 

  • Burgman MA, Possingham HP, Lynch AJJ, Keith DA, McCarthy MA, Hopper SD, Drury WL, Passioura JA, Devries RJ (2001) A method for setting the size of plant conservation target areas. Conserv Biol 15:603–616

    Article  Google Scholar 

  • Caswell H (1996) Second derivatives of population growth rate: calculations and applications. Ecology 77:870–879

    Article  Google Scholar 

  • Caswell H (2000) Prospective and retrospective perturbation analyses: their roles in conservation biology. Ecology 81:619–627

    Article  Google Scholar 

  • Caswell H (2001) Matrix population models: construction, analysis and interpretation. Sinauer Associates, Sunderland, MA, 722 pp

    Google Scholar 

  • Cochrane ME, Ellner S (1992) Simple methods for calculating age-based life history parameters for stage-structured models. Ecol Monogr 63:345–363

    Article  Google Scholar 

  • Coulson T, Mace GM, Hudson E, Possingham H (2001) The use and abuse of population viability analysis. Trends Ecol Evol 16:219–221

    Article  PubMed  Google Scholar 

  • Crone EE, Gehring JL (1998) Population viability of Rorippa columbiae: multiple models and spatial trend data. Conserv Biol 12:1054–1065

    Article  Google Scholar 

  • Cross PC, Beissinger SR (2001) Using logistic regression to analyze the sensitivity of PVA models: a comparison of methods based on African wild dog models. Conserv Biol 15:1335–1346

    Article  Google Scholar 

  • Crouse DT, Crowder LB, Caswell H (1987) A stage-based population model for Loggerhead sea turtles and implications for conservation. Ecology 68:1412–1423

    Article  Google Scholar 

  • DeKroon H, Plaiser A, van Groenendael J (1987). Density-dependent simulation of the population dynamics of a perennial grassland species, Hypochaeris radicata. Oikos 50:3–12

    Article  Google Scholar 

  • DeKroon H, van Groenendael J, Ehrlen J (2000) Elasticities: a review of methods and model limitations. Ecology 81:607–618

    Article  Google Scholar 

  • Dennis B, Taper ML (1994) Density dependence in time series observations of natural populations: estimation and testing. Ecol Monogr 64:205–224

    Article  Google Scholar 

  • Dennis B, Munholland PL, Scott JM (1991) Estimation of growth and extinction parameters for endangered species. Ecol Monogr 61:115–144

    Article  Google Scholar 

  • Doak D, Kareiva P, Klepetka B (1994) Modeling population viability for the desert tortoise in the Western Mojave Desert. Ecol Appl 4:446–460

    Article  Google Scholar 

  • Doak DF, Thomson DM, Jules EK (2002)PVA for plants: understanding the demographic consequences of seed banks for population health. In: Beissinger S, McCullough D (eds) Population viability analysis. University of Chicago Press, Chicago

    Google Scholar 

  • Easterling MR, Ellner SP, Dixon PM (2000) Size-specific sensitivity: applying a new structured population model. Ecology 81:694–708

    Article  Google Scholar 

  • Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size: implications for plant conservation. Annu Rev Ecol Syst 24:217–242.

    Article  Google Scholar 

  • Erikkson O (1996) Regional dynamics of plants: a review of evidence for remnant, source-sink, and metapopulations. Oikos 77:248–258

    Article  Google Scholar 

  • Fagan WF, Meir E, Predergast J, Folarin A, Kareiva P (2001) Characterizing population vulnerability for 758 species. Ecol Lett 4:132–138

    Article  Google Scholar 

  • Fieberg J, Ellner SP (2000) When is it meaningful to estimate an extinction probability? Ecology 81:2040–2047

    Article  Google Scholar 

  • Fieberg J, Ellner SP (2001) Stochastic matrix models for conservation and management: a comparative review of methods. Ecol Lett 4:244–266

    Article  Google Scholar 

  • Fox GA, Gurevitch J (2000) Population numbers count: tools for near-term demographic analysis. Am Nat 156:242–256

    Article  Google Scholar 

  • Gerber LR, DeMaster DP (1999) A quantitative approach to Endangered Species Act classification of long-lived vertebrates: application to the North Pacific humpback whale. Conserv Bioll 3:1203–1214

    Article  Google Scholar 

  • Grant A, Benton TG (2000) Elasticity analysis for density-dependent populations in stochastic environments. Ecology 81:680–693

    Article  Google Scholar 

  • Groom MJ, Pascual MA (1998) The analysis of population persistence: an outlook on the practice of viability analysis. In: Fiedler PL, Kareiva PF (eds) Conservation biology, 2nd edn. Chapman and Hall, New York, pp 4–27

    Chapter  Google Scholar 

  • Gross KG, Lockwood JR, Frost C, Morris WF (1998) Modeling controlled burning and trampling reduction for conservation of Hudsonia Montana. Conserv Biol 12:1291–1302

    Article  Google Scholar 

  • Hanski I (1994) A practical model of metapopulation dynamics. J Anim Ecol 63:151–162

    Article  Google Scholar 

  • Hanski I (1999) Metapopulation ecology. Oxford University Press, Oxford, 313 p

    Google Scholar 

  • Hanski I, Gilpin ME (1997) Metapopulation biology; ecology, genetics and evolution. Academic Press, San Diego, 512 p

    Google Scholar 

  • Hanski I, Ovaskainen O (2000) The metapopulation capacity of a fragmented landscape. Nature 404:755–758

    Article  PubMed  CAS  Google Scholar 

  • Harrison S, Ray C (2002) Plant population viability and metapopulation-level processes. In: Beissinger S, McCullough D (eds) Population viability analysis. University of Chicago Press, Chicago, p 577

    Google Scholar 

  • Heppell S, Caswell H, Crowder LB (2000). Life histories and elasticity patterns: perturbation analysis for species with minimal demographic data. Ecology 81:654–665

    Article  Google Scholar 

  • Homestake Mining Company (2001) MacLaughlin Mine: annual monitoring report. 1 July 2000–30 June 2001. Homestake Mining Company, Napa County, California

    Google Scholar 

  • Horvitz C, Schemske DW, Caswell H (1997) The relative “importance” of life-history stages to population growth: prospective and retrospective analyses. In: Tuljapurkar S, Caswell H (eds) Structured population models in marine, terrestrial and freshwater systems. Chapman and Hall, New York, pp 247–271

    Chapter  Google Scholar 

  • Husband BC, Barrett SCH (1996) A metapopulation perspective in plant population biology. J Ecol 84:461–469

    Article  Google Scholar 

  • Kalisz S, McPeek M (1992) Demography of an age-structured annual: resampled projection matrices, elasticity analyses, and seed bank effects. Ecology 73:1082–1093

    Article  Google Scholar 

  • Kaye TN (2001) Population viability analysis of endangered plant species: an evaluation of stochastic methods and an application to a rare prairie plants. PhD Thesis, Oregon State University, Corvallis, OR

    Google Scholar 

  • Kaye TN, Pendergrass KL, Finley K, Kauffman JB (2001) The effect of fire on the population viability of an endangered prairie plant. Ecol Appl 11:1366–1380

    Article  Google Scholar 

  • Kindvall O (2000) Comparative precision of three spatially realistic simulation models of metapopulation dynamics. Ecol Bull 48:101–110

    Google Scholar 

  • Lande R (1993) Risks of population extinction from demographic and environmental stochasticity and random catastrophes. Am Nat 142:911–927

    Article  Google Scholar 

  • Lesica P (1995) Demography of Astragalus scaphoides and effects of herbivory on population growth. Great Basin Nat 55:142–150

    Google Scholar 

  • Levins R (1969) Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull Entomol Soc Am 15:237–240

    Google Scholar 

  • Lindenmayer DB, Ball I, Possingham HP, McCarthy MA, Pope ML (2001) A landscape-scale test of the predictive ability of a spatially explicit model for population viability analysis. J Appi Ecol 38:36–48

    Article  Google Scholar 

  • Lonsdale WM, Braithwaite RW, Lane AM, Farmer J (1998) Modelling the recovery of an annual savanna grass following a fire-induced crash. Aust J Ecol 23:509–513

    Article  Google Scholar 

  • Ludwig D (1996) Uncertainty and the assessment of extinction probabilities. Ecol Appi 6:1067–1076

    Article  Google Scholar 

  • Ludwig D (1999) Is it meaningful to estimate a probability of extinction? Ecology 80:298–310

    Article  Google Scholar 

  • Mangel M, Tier C (1993) A simple direct method for finding persistence times of populations and application to conservation problems. Proc Natl Acad Sci USA 90:1083–1086

    Article  PubMed  CAS  Google Scholar 

  • Maschinski J, Frye R, Rutman S (1997) Demography and population viability of an endangered plant species before and after protection from trampling. Conserv Biol 11:990–999

    Article  Google Scholar 

  • McCarthy MA (1996) Extinction dynamics of the helmeted honeyeater: effects of demography, stochasticity, inbreeding and spatial structure. Ecol Model 85:51–163

    Article  Google Scholar 

  • McCarthy MA, Burgman MA, Ferson S (1995) Sensitivity analysis for models of population viability. Biol Conserv 73:93–100

    Google Scholar 

  • McCarthy MA, Possingham HP, Day JR, Tyre AJ (2001a) Testing the accuracy of population viability analysis. Conserv Biol 15:1030–1038

    Article  Google Scholar 

  • McCarthy MA, Possingham HP, Gill AM (2001b) Using stochastic dynamic programming to determine optimal fire management for Banksia ornata. J Appl Ecol 38:585–592

    Article  Google Scholar 

  • Meir E, Fagan WJ (2000) Will observation error and biases ruin the use of simple extinction models? Conserv Biol 14:148–154

    Article  Google Scholar 

  • Menges ES (1990) Population viability analysis for an endangered plant. Conserv Biol 4:52–62

    Article  Google Scholar 

  • Menges ES (2000a) Applications of population viability analyses in plant conservation. Ecol Bull 48:73–84

    Google Scholar 

  • Menges ES (2000b) Population viability analyses in plants: challenges and opportunities. Trends Ecol Evol 15:51–56

    Article  PubMed  Google Scholar 

  • Menges ES, Dolan RW (1998) Demographic viability of populations of Silene regia in Midwestern prairies: relationships with fire management, genetic variation, geographic location, population size, and isolation. J Ecol 86:63–78

    Article  Google Scholar 

  • Mills LS, Hayes SG, Baldwin C, Wisdom MJ, Citta J, Mattson DJ, Murphy K (1996) Factors leading to different viability predictions for a grizzly bear data set. Conserv Biol 10:863–873

    Article  Google Scholar 

  • Mills LS, Doak DF, Wisdom MJ (1999) Reliability of conservation actions based on elasticity analysis of matrix models. Conserv Biol 13:815–829

    Article  Google Scholar 

  • Moloney KA (1986) A generalized algorithm for determining canopy size. Oecologia 69:176–180

    Article  Google Scholar 

  • Morris W, Doak D, Groom M, Kareiva P, Fieberg J, Gerber L, Murphy P, Thomson D (1999) A practical handbook for population viability analysis. The Nature Conservancy Press, New York

    Google Scholar 

  • Nantel P, Gagnon D, Nault A (1996) Population viability analysis of American ginseng and wild leek harvested in stochastic environments. Conserv Biol 10:608–621

    Article  Google Scholar 

  • Olmsted I, Alvarez-Bullya ER (1995) Sustainable harvest of tropical trees: demography and matrix models of two palm species in Mexico. Ecol Appl 5:484–500

    Article  Google Scholar 

  • Oostermeijer JGB (2000) Population viability analysis of the rare Gentiana pneumonan-the: the importance of genetics, demography and reproductive biology. In: Young AG, Clarke GM (eds) Genetics, demography and viability of fragmented populations. Cambridge University Press, Cambridge, pp 313–333

    Chapter  Google Scholar 

  • Pfister CA (1998) Patterns of variance in stage-structured populations: evolutionary predictions and ecological implications. Proc Natl Acad Sci USA 95:213–218

    Article  PubMed  CAS  Google Scholar 

  • Possingham HP, Davies I (1995) ALEX: a model for the viability analysis of spatially structured populations. Biol Conserv 73:143–150

    Google Scholar 

  • Quintana-Ascendo PF, Menges E (1996) Inferring metapopulation dynamics from patch-level incidence of Florida scrub plants. Conserv Biol 10:1210–1219

    Article  Google Scholar 

  • Ricklefs RE, Schluter D (1993) Species diversity in ecological communities: historical and geographical perspectives. The University of Chicago Press, Chicago, 416 p

    Google Scholar 

  • Ruckelhaus M, Hartway C, Kareiva P (1997) Assessing the data requirements of spatially explicit dispersal models. Conserv Biol 11:1298–1306

    Article  Google Scholar 

  • Schemske DW, Husband BC, Ruckelshaus MH, Goodwillie C, Parker IM, Bishop JG (1994) Evaluating approaches to the conservation of rare and endangered plants. Ecology 75:584–606

    Article  Google Scholar 

  • Shaffer ML (1983) Determining minimum viable population sizes for the grizzly bear. Int Conf Bear Res Manage 5:133–139

    Google Scholar 

  • Shea K, Rees M, Wood SN (1994) Trade-offs, elasticities, and the comparative method. J Ecol 82:951–957

    Article  Google Scholar 

  • Silvertown J, Franco M (1993) Comparative plant demography: relationship of life-cycle components to the finite rate of increase in woody and herbaceous perennials. J Ecol 81:465–476

    Article  Google Scholar 

  • Silvertown J, Franco M, Menges E (1996) Interpretation of elasticity matrices as an aid to the management of plant populations for conservation. Conserv Biol 10:591–597

    Article  Google Scholar 

  • Sjögren-Gulve P (1991) Extinction and isolation gradients in metapopulations: the case of the pool frog (Rana lessonae). Biol J Linn Soc 42:135–147

    Article  Google Scholar 

  • Sjögren-Gulve P, Hanski I (2000) Metapopulation viability analysis using occupancy models. Ecol Bull 48:53–72

    Google Scholar 

  • Sjögren-Gulve P, Ray C (1996) Using logistic regression to model metapopulation dynamics: large-scale forestry extirpates the pool frog. In: McCullough DR (ed) Metapopulations and wildlife conservation. Island Press, Washington, DC, pp 111–137

    Google Scholar 

  • Tilman D, Pacala S (1997) Spatial ecology. Princeton University Press, Princeton, 368 pp

    Google Scholar 

  • Valverde T, Silvertown J (1997) A metapopulation model for Primula vulgaris, a temperate forest understory herb. J Ecol 85:193–210

    Article  Google Scholar 

  • Vandermeer J (1978) Choosing category size in a stage projection matrix. Oecologia 32:79–84

    Article  Google Scholar 

  • Watkinson AR (1990) The population dynamics of Vulpia fasciculata: a nine-year study. J Ecol 78:196–209

    Article  Google Scholar 

  • Werner P, Caswell H (1977) Population growth rates and age versus stage-structured models for teasel (Dipsacus sylvestris Huds.). Ecology 58:1103–1111

    Article  Google Scholar 

  • Wisdom M J, Mills LS, Doak DF (2000) Life stage simulation analysis: estimating vital-rate effects on population growth for conservation. Ecology 81: 628–641

    Article  Google Scholar 

  • Wisdom M, Mills L (1997) Sensitivity analysis to guide population recovery: prairiechicken as an example. J Wildl Manage 61:302–312

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brigham, C.A., Thomson, D.M. (2003). Approaches to Modeling Population Viability in Plants: An Overview. In: Brigham, C.A., Schwartz, M.W. (eds) Population Viability in Plants. Ecological Studies, vol 165. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09389-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09389-4_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07869-9

  • Online ISBN: 978-3-662-09389-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics