Skip to main content

Considering Interactions: Incorporating Biotic Interactions into Viability Assessment

  • Chapter
Population Viability in Plants

Part of the book series: Ecological Studies ((ECOLSTUD,volume 165))

Abstract

Most analyses of population viability focus on changes in numbers of the focal species independent of other members of their community or any other biotic interactions. It is difficult to incorporate all relevant factors into a viability analysis, but leaving out biotic interactions may be a critical flaw in some analyses. While single-species population viability analyses (PVAs) implicitly incorporate the effect of species interactions on population growth rate parameters (i.e., vital rates), models that explicitly consider changes in species dynamics as ecological conditions change may be needed. Unfortunately, these models will significantly increase data requirements. Because robust data sets are notoriously difficult to acquire even for single-species PVAs, it is important to evaluate the relative importance of species interactions before considering development of a PVA model that incorporates them explicitly. In this chapter, we discuss the various kinds of interactions that plants are involved in, evaluate when species interactions are likely to matter, consider strategies for deciding when to incorporate these interactions into PVA models, and discuss relevant modeling approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackerman JD, Sabat A, Zimmerman JK (1996) Seedling establishment in an epiphytic orchid: an experimental study of seed limitation. Oecologia 106:192–198

    Google Scholar 

  • Addicott JF (1986) Variation in the costs and benefits of mutualism: the interaction between yucca and yucca moths. Oecologia 70:486–494

    Google Scholar 

  • Agrawal AA (1999) Induced responses to herbivory in wild radish: effects on several herbivores and plant fitness. Ecology 80:1713–1723

    Google Scholar 

  • Agrawal AA, Laforsch C, Tollrian R (1999) Transgenerational induction of defences in animals and plants. Nature 401:60–63

    CAS  Google Scholar 

  • Aizen MA, Feinsinger P (1994a) Forest fragmentation, pollination, and plant reproduction in a Chaco dry forest, Argentina. Ecology 75:330–351

    Google Scholar 

  • Aizen MA, Feinsinger P (1994b) Habitat fragmentation, native insect pollinators, and feral honey bees in Argentine “Chaco Serrano”. Ecol Appl 4:378–392

    Google Scholar 

  • Alcantara JM, Rey PJ, Sanchez-Lafuente AM, Valera F (2000) Early effects of rodent post-dispersal seed predation on the outcome of the plant-seed disperser interaction. Oikos 88:362–370

    Google Scholar 

  • Anstett MC, Michaloud G, Kjellberg F (1995) Critical population size for fig/wasp mutualism in a seasonal environment: effect and evolution of the duration of female receptivity. Oecologia 103:453–461

    Google Scholar 

  • Anstett MC, Hossaert-McKey M, McKey D (1997) Modeling the persistence of small populations of strongly interdependent species: figs and fig wasps. Conserv Biol 11:204–213

    Google Scholar 

  • Augspurger CK (1984) Seedling survival of tropical tree species: interactions of dispersal distance, light-gaps, and pathogens. Ecology 65:1705–1712

    Google Scholar 

  • Beattie AJ (1985) The evolutionary ecology of ant-plant mutualisms. Cambridge University Press, New York

    Google Scholar 

  • Borowicz VA (1997) A fungal root symbiont modifies plant resistance to an insect herbivore. Oecologia 112:534–542

    Google Scholar 

  • Boucher DH, James S, Keeler KH (1982) The ecology of mutualisms. Annu Rev Ecol Syst 13:315–347

    Google Scholar 

  • Bronstein JL (1994) Conditional outcomes in mutualistic interactions. Trends Ecol Evol 9:214–217

    PubMed  CAS  Google Scholar 

  • Bronstein JL, Gouyon P-H, Gliddon C, Kjellberg F, Michaloud G (1990) The ecological consequences of flowering asynchrony in monoecious figs: a simulation study. Ecology 71:2145–2156

    Google Scholar 

  • Bronstein JL, Hossaert-McKey M (1995) Hurricane Andrew and a Florida fig pollination mutualism: resilience of an obligate interaction. Biotropica 27:373–381

    Google Scholar 

  • Buchmann SL, Nabhan GP (1996) The forgotten pollinators. Island Press, Washington, DC

    Google Scholar 

  • Carlsen TM, Menke JW, Pavlik PM (2000) Reducing competitive suppression of a rare annual forb by restoring native California grasslands. Restor Ecol 8:18–29

    Google Scholar 

  • Caswell H (2000) Matrix population models, 2nd edn. Sinauer, Sunderland, MA

    Google Scholar 

  • Christian CE (2001) Consequences of a biological invasion reveal the importance of mutualism for plant communities. Nature 413:635–638

    PubMed  CAS  Google Scholar 

  • Crawley MJ (1992) Seed predators and plant population dynamics. In: Fenner M (ed) Seeds: the ecology of regeneration in plant communities. CAB International, Walling-ford,pp 157–192.

    Google Scholar 

  • Cunningham SA (2000a) Depressed pollination in habitat fragments causes low fruit set. Proc R Soc Lond Ser B 267:1149–1152

    CAS  Google Scholar 

  • Cunningham SA (2000b) Effects of habitat fragmentation on the reproductive ecology of four plant species in mallee woodland. Conserv Biol 14:758–768

    Google Scholar 

  • Curran LM, Leighton M (2000) Vertebrate responses to spatiotemporal variation in seed production of mast-fruiting Dipterocarpaceae. Ecol Monogr 70:101–128

    Google Scholar 

  • Cushman JH, Addicott JF (1991) Conditional interactions in ant-plant-herbivore mutualisms. In: Huxley CR, Cutler DF (eds) Ant-plant interactions. Oxford University Press, Oxford, pp 92–103

    Google Scholar 

  • Damman H, Cain ML (1998) Population growth and viability analyses of the clonal woodland herb, Asarum canadense. J Ecol 86:13–26

    Google Scholar 

  • Diaz I, Papic C, Armesto JJ (1999) An assessment of post-dispersal seed predation in temperate rain forest fragments in Chiloé Island, Chile. Oikos 87:228–238

    Google Scholar 

  • Dick CW (2001) Genetic rescue of remnant tropical trees by an alien pollinator. Proc R Soc Lond B 1483:2391–2396

    Google Scholar 

  • Fleming TH (1991) Fruiting plant-frugivore mutualism: the evolutionary theater and the ecological play. In: Price PW, Lewinsohn TM, Fernandez GW, Benson WW (eds) Plant-animal interactions. Evolutionary ecology in tropical and temperate regions. Wiley, New York, pp 119–144

    Google Scholar 

  • Gange AC, Nice HE (1997) Performance of the thistle gall fly, Urophora cardui, in relation to host plant nitrogen and mycorrhizal colonization. New Phytol 137:335–343

    Google Scholar 

  • Gautier-Hion A, Gautier J-P, Maisels F (1993) Seed dispersal versus seed predation: an inter-site comparison of two related African monkeys. In: Fleming TH, Estrada A (eds) Frugivory and seed dispersal: ecological and evolutionary aspects. Kluwer, Boston, pp 237–244

    Google Scholar 

  • Gehring CA, Cobb NS, Whitham TG (1997) Three-way interactions among ectomycor-rhizal mutualists, scale insects, and resistant and susceptible pinyon pines. Am Nat 149:824–841

    PubMed  CAS  Google Scholar 

  • Goodwin BJ, McAllister AJ, Fahrig L (1999) Predicting invasiveness of plant species based on biological information. Conserv Biol 13:422–426

    Google Scholar 

  • Groom MJ (1998) Allee effects limit population viability of an annual plant. Am Nat 151:487–496

    PubMed  CAS  Google Scholar 

  • Hackney EE, McGraw JB (2001) Experimental demonstration of an Allee effect in American ginseng. Conserv Biol 1:129–136

    Google Scholar 

  • Hambäck PA, Agren J, Ericson L (2000) Associational resistance: insect damage to purple loosestrife reduced in thickets of sweet gale. Ecology 81:1784–1794

    Google Scholar 

  • Hanzawa FM, Beattie AJ, Culver DC (1988) Directed dispersal: demographic analysis of an ant-seed mutualism. Am Nat 131:1–13

    Google Scholar 

  • Harrison RD (2000) Repercussions of El Nino: drought causes extinction and the breakdown of mutualism in Borneo. Proc R Soc Lond Ser B 267:911–915

    CAS  Google Scholar 

  • Heithaus ER (1981) Seed predation by rodents on three ant-dispersed plants. Ecology 62:136–145

    Google Scholar 

  • Heithaus ER (1986) Seed dispersal mutualism and the population density of Asarum canadense, an ant-dispersed plant. In: Estrada A, Fleming EA (eds) Frugivores and seed dispersal. Junk, Dordrecht, pp 199–210

    Google Scholar 

  • Herrera CM, Jordano P (1981) Prunus mahaleb and birds: the high efficiency seed dispersal system of a temperate fruiting tree. Ecol Monogr 51:203–218

    Google Scholar 

  • Heywood VH (1993) Flowering plants of the world. Oxford University Press, New York

    Google Scholar 

  • Hilborn R, Mangel M (1997) The ecological detective: confronting models with data. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Hochberg ME, Thomas JA, Elmes GW (1992) A modelling study of the population dynamics of a large blue butterfly, Macullmea rebeli, a parasite of red ant nests. J Anim Ecol 61:397–410

    Google Scholar 

  • Hochberg ME, Clarke RT, Elmes GW (1994) Population dynamic consequences of direct and indirect interactions involving a large blue butterfly and its plant and red ant hosts. J Anim Ecol 63:375–391

    Google Scholar 

  • Holland JN, DeAngelis DL (2001) Population dynamics and the ecological stability of obligate pollination mutualisms. Oecologia 126:575–586

    Google Scholar 

  • Holmes RD, Jepson-Innes K (1989) A neighborhood analysis of herbivory in Bouteloua gracilis. Ecology 70:971–976

    Google Scholar 

  • Holsinger KE, Gottlieb LD (1991) Conservation of rare and endangered plants: principles and prospects. In: Falk DA, Holsinger KE (eds) Genetics and conservation of rare plants. Oxford University Press, New York, pp 195–208

    Google Scholar 

  • Holthuijzen AMA, Sharik TL, Fraser JD (1993) Dispersal of eastern red cedar (Juniperus virginiana) into pastures: an overview. Can J Bot 65:1092–1095

    Google Scholar 

  • Howe HF, Kerckove GAV (1979) Fecundity and seed dispersal of a tropical tree. Ecology 60:180–189

    Google Scholar 

  • Howe HF, Primack RB (1975) Differential seed dispersal by birds of the tree Caseoria nitida (Flacourtiaceae). Biotropica 7:278–283

    Google Scholar 

  • Inouye DW (1982) The consequences of herbivory: a mixed blessing for Jurinea mollis (Asteraceae). Oikos 39:269–272

    Google Scholar 

  • Inouye DW, Taylor OR (1979) A temperate region plant-ant-seed predator system: consequences of extrafloral nectar secretion by Helianthella quinquenervis. Ecology 60:1–7

    Google Scholar 

  • Janzen DH (1979) How to be a fig. Annu Rev Ecol Syst 10:13–51

    Google Scholar 

  • Janzen DH, Miller GA, Hackforth-Jones J, Pond CM, Hooper K, Janos DP (1976) Two Costa Rican bat-generated seed shadows of Andira inermis (Leguminosae). Ecology 57:1068–1075

    Google Scholar 

  • Jennersten O, Nilsson SG (1993) Insect flower visitation frequency and seed production in relation to patch size of Viscaria vulgaris (Caryophyllaceae). Oikos 68:283–292

    Google Scholar 

  • Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol 135:575–586

    Google Scholar 

  • Kaplan BA (1998) Variation in seed handling by two species of forest monkeys in Rwanda. Am J Primatol 45:83–101

    Google Scholar 

  • Karban R (1997) Neighbourhood affects a plant’s risk of herbivory and subsequent success. Ecol Entomol 22:433–439

    Google Scholar 

  • Karban R, Kuc J (1999) Induced resistance against pathogens and herbivores: an overview. In: Agrawal AA, Tuzun S, Bent E (eds) Induced plant defenses against pathogens and herbivores. The American Phytopathological Society Press, St Paul, MN, ppl-16

    Google Scholar 

  • Karban R, Myers JH (1989) Induced plant responses to herbivory. Annu Rev Ecol Syst 20: 331–348

    Google Scholar 

  • Kearns CA, Inouye DW (1994) Fly pollination of Linum lewisii (Linaceae). Am J Bot 81:1091–1095

    Google Scholar 

  • Kearns CA, Inouye DW (1997) Pollinators, flowering plants, and conservation biology. Bio Science 47:297–307

    Google Scholar 

  • Kearns CA, Inouye DW, Waser NW (1998) Endangered mutualisms: the conservation of plant-pollinator interactions. Annu Rev Ecol Syst 29:83–112

    Google Scholar 

  • Kelly D, Harrison AL, Lee WG, Payton IJ, Wilson PR, Schauber EM (2000) Predator satiation and extreme mast seeding in 11 species of Chionochloa (Poaceae). Oikos 90:477–488

    Google Scholar 

  • Kretzer AM, Bidartondo MI, Grubisha LC, Spatafora JW, Szaro TM, Bruns TD (2000) Regional specialization of Sarcodes sanguinea (Ericaceae) on a single fungal sym-biont from the Rhizopogon ellenae (Rhizopogonaceae) species complex. Am J Bot 87:1778–1782

    PubMed  CAS  Google Scholar 

  • Kunin WE, Gaston KJ (eds) (1997) The biology of rarity: causes and consequences of rare-common differences. Chapman and Hall, London

    Google Scholar 

  • Lamont BB, Klinkhamer PGL, Witkowski ETF (1993) Population fragmentation may reduce fertility to zero in Banksia goodii — a demonstration of the Allee effect. Oecolo-gia 94:446–450

    Google Scholar 

  • Lapointe L, Molard J (1997) Costs and benefits of mycorrhizal infection in a spring ephemeral, Erythronium americanum. New Phytol 135:491–500

    Google Scholar 

  • Larson DL (1996) Seed dispersal by specialist versus generalist foragers: the plant’s perspective. Oikos 76:113–120

    Google Scholar 

  • Laverty TM (1992) Plant interactions for pollinator visits: a test of the magnet species effect. Oecologia 89:502–508

    Google Scholar 

  • Lesica P, Shelly JS (1996) Competitive effects of Centaurea maculosa on the population dynamics of Arabis fecunda. Bull Torrey Bot Club 123:111–121

    Google Scholar 

  • Levey DJ, Byrne MM (1993) Complex ant-plant interactions: rain forest ants as secondary dispersers and post-dispersal seed predators. Ecology 74:1802–1812

    Google Scholar 

  • Livingston RB (1972) Influence of birds, stones and soil on the establishment of pasture juniper, Juniperus communis, and red cedar, /. virginiana in New England pastures. Ecology 53:1141–1147

    Google Scholar 

  • Louda SM, Potvin MA (1995) Effect of inflorescence-feeding insects on the demography and lifetime fitness of a native plant. Ecology 76:229–245

    Google Scholar 

  • Maloof JE, Inouye DW (2000) Are nectar robbers cheaters or mutualists? Ecology 81:2651–2661

    Google Scholar 

  • Maron JL, Simms EL (1997) Effect of seed predation on seed bank size and seedling recruitment of bush lupine (Lupinus arboreus). Oecologia 111:76–83

    Google Scholar 

  • Mattson WJ, Addy ND (1975) Phytophagous insects as regulators of forest primary production. Science 190:515–520

    Google Scholar 

  • Morales MA (1999) The role of space and behavior in an ant-membracid mutualism. PhD Thesis. University of Connecticut, Storrs, Connecticut

    Google Scholar 

  • Morales MA (2000) Survivorship of an ant-tended membracid as a function of ant recruitment. Oikos 90:469–476

    Google Scholar 

  • Morales MA, Heithaus ER (1998) Food from seed-dispersal mutualism shifts sex ratios in colonies of the ant Aphaenogaster rudis. Ecology 79:734–739

    Google Scholar 

  • Murray KG (1988) Avian seed dispersal of three neotropical gap-dependent plants. Ecol Monogr 58:271–298

    Google Scholar 

  • Nabhan GP, Buchmann SL (1997) Services provided by pollinators. In: Daily GC (editor) Nature’s services. Societal dependence on natural ecosystems. Island Press, Washington, DC, pp 133–150

    Google Scholar 

  • Nantel P, Gagnon D, Nault A (1996) Population viability analysis of American ginseng and wild leek harvested in stochastic environments. Conserv Biol 10:608–621

    Google Scholar 

  • Nee S, May RM, Hassell MP (1996) Two-species metapopulation models. In: Hanski I, Gilpin ME (eds) Metapopulation biology: ecology, genetics, and evolution. Academic, San Diego, pp 123–148

    Google Scholar 

  • Norconk MA, Grafton BW, Conklin-Brittain NL (1998) Seed dispersal by neotropical seed predators. Am J Primatol 45:103–126

    PubMed  CAS  Google Scholar 

  • Offenberg J (2001) Balancing between mutualism and exploitation: the symbiotic interaction between Lasius ants and aphids. Behav Ecol Sociobiol 49:303–310

    Google Scholar 

  • Oosterrneijer JGB (2000) Population viability of Gentiana pneumonanthe: the importance of genetics, demography, and reproductive biology. In: Young AG, Clarke GM (eds) Genetics, demography, and viability of fragmented populations, Cambridge University Press, Cambridge, pp 313–334

    Google Scholar 

  • Paige KN, Whitham TG (1987) Overcompensation in response to mammalian herbivory: the advantage of being eaten. Am Nat 129:407–416

    Google Scholar 

  • Parker IM (2000) Invasion dynamics of Cytisus scoparius: a matrix model approach. Ecol Appl 10:726–743

    Google Scholar 

  • Pudlo RJ, Beattie AJ, Culver DC (1980) Population consequences of changes in an ant-seed mutualism in Sanguinaria canadensis. Oecologia 146:32–37

    Google Scholar 

  • Rathcke BJ, Jules ES (1993) Habitat fragmentation and plant-pollinator interactions. Curr Sci 65:273–277

    Google Scholar 

  • Reeves SA, Usher MB (1989) Application of a diffusion model to the spread of an invasive species: the coypu in Great Britain. Ecol Model 47:217–232

    Google Scholar 

  • Sargent S (1990) Neighborhood effects on fruit removal by birds: a field experiment with Viburnum dentatum (Caprifoliaceae). Ecology 71:1289–1298

    Google Scholar 

  • Schemske DW, Husband BC, Ruckelshaus MH, Goodwillie C, Parker IM, Bishop JG (1994) Evaluating approaches to the conservation of rare and endangered plants. Ecology 75:584–606

    Google Scholar 

  • Schupp E, Howe H, Augsburger C, Levey D (1989) Arrival and survival in tropical treefall gaps. Ecology 70:562–564

    Google Scholar 

  • Schupp EW (1990) Annual variation in seedfall, postdispersal prédation, and recruitment of a neotropical tree. Ecology 71:504–515

    Google Scholar 

  • Sih A, Baltus M-S (1987) Patch size, pollinator behavior, and pollinator limitation in catnip. Ecology 68:1679–1690

    Google Scholar 

  • Simberloff D, Brown BJ, Lowrie S (1978) Isopod and insect root borers may benefit Florida mangroves. Science 201:630–632

    PubMed  CAS  Google Scholar 

  • Smith BH, deRivera CE, Bridgman CL, Woida JJ (1989) Frequency-dependent seed dispersal by ants of two deciduous forest herbs. Ecology 70:1645–1648

    Google Scholar 

  • Snow AA, Spira TP, Simpson R, Klips RA (1996) The ecology of geitonogamous pollination. In: Lloyd DG, Barrett SCH (eds) Floral biology. Chapman and Hall, New York, pp 191–216

    Google Scholar 

  • Snow DW, Snow BK (1986) Some aspects of avian frugivory in a north temperate area relevant to tropical forest. In: Estrada A, Fleming TH (eds) Frugivores and seed dispersal. Junk, Dordrecht, pp 159–164

    Google Scholar 

  • Sousa WP, Mitchell BJ (1999) The effect of seed predators on plant distributions: is there a general pattern in mangroves? Oikos 86:55–66

    Google Scholar 

  • Steffan-Dewenter I, Tscharntke T (1999) Effects of habitat isolation on pollinator communities and seed set. Oecologia 121:432–440

    Google Scholar 

  • Stephens PA, Sutherland WJ, Freckleton RP (1999) What is the Allee effect? Oikos 87:185–190

    Google Scholar 

  • Stowe KA, Marquis RJ, Hochwender CG, Simms EL (2000) The evolutionary ecology of tolerance to consumer damage. Annu Rev Ecol Syst 31:565–595

    Google Scholar 

  • Terborgh J, Losos E, Riley MP, Bolanos Riley M (1993) Predation by vertebrates and invertebrates on the seeds of five canopy tree species of an Amazonian forest. In: Fleming TH, Estrada A (eds) Frugivory and seed dispersal: ecological and evolutionary aspects. Kluwer, Boston, pp 375–386

    Google Scholar 

  • Thompson JN (1985) Postdispersal seed predation in Lomatium spp (Umbelliferae): variation among individuals and species. Ecology 66:1608–1616

    Google Scholar 

  • Thompson JN (1988) Variation in interspecific interactions. Annu Rev Ecol Syst 19:65–87

    Google Scholar 

  • Traveset A, Riera N, Mas RF (2001) Passage through bird guts causes interspecific differences in seed germination characteristics. Funct Ecol 15: 669–675

    Google Scholar 

  • Turnbull LA, Crawley MJ, Rees M (2000) Are plant populations seed-limited? A review of seed sowing experiments. Oikos 88:225–238

    Google Scholar 

  • Underwood N (1998) The timing of induced resistance and induced susceptibility in the soybean-Mexican bean beetle system. Oecologia 114:376–381

    Google Scholar 

  • Underwood N (1999) The influence of induced plant resistance on herbivore population dynamics. In: Agrawal AA, Tuzun S, Bent E (eds) Induced plant defenses against pathogens and herbivores. American Phytopathological Society Press, St. Paul, MN, pp 211–229

    Google Scholar 

  • Wackers FL, Wunderlin R (1999) Induction of cotton extrafloral nectar production in response to herbivory does not require a herbivore-specific elicitor. Entomol Exp Appl 91:149–154

    Google Scholar 

  • Walsburg GE (1975) Digestive adaptations of Phainopepla nitens with the eating of mistletoe berries. Condor 77:169–174

    Google Scholar 

  • Whelan CJ, Willson MF (1991) Spatial and temporal patterns of postdispersal seed prédatioe. Can J Bot 69:428–436

    Google Scholar 

  • Whelan CJ, Schmidt KA, Steele BB, Quinn WJ, Dilger S (1998) Are bird-consumed fruits complementary resources? Oikos 83:195–205

    Google Scholar 

  • White JA, Whitham TG (2000) Associational susceptibility of cottonwood to a box elder herbivore. Ecology 81:1795–1803

    Google Scholar 

  • Widen B (1993) Demographic and genetic effects on reproduction as related to population size in a rare, perennial herb, Senecio integrifolius (Asteraceae). Biol J Linn Soc 50:179–195

    Google Scholar 

  • Willson MF, Harmeson JC (1973) Seed preferences and digestive efficiency of cardinals and song sparrows. Condor 70:225–234

    Google Scholar 

  • Wold EN, Marquis RJ (1997) Induced defense in white oak: effects on herbivores and consequences for the plant. Ecology 78:1356–1369

    Google Scholar 

  • Wolin CL (1985) The population dynamics of mutualistic systems. In: Boucher DH (ed) The biology of mutualism. Oxford University Press, New York, pp 40–99

    Google Scholar 

  • Young TP, Okello BD (1998) Relaxation of an induced defense after exclusion of herbivores: spines on Acacia drepanolobium. Oecologia 115: 508–513

    Google Scholar 

  • Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol 11:413–418

    PubMed  CAS  Google Scholar 

  • Zalba SM, Sonaglioni MI, Compagnoni CA, Belenguer CJ (2000) Using a habitat model to assess the risk of invasion by an exotic plant. Biol Conserv 93:203–208

    Google Scholar 

  • Zelmer CD, Currah RS (1995) Evidence for a fungal liaison between Corallorhiza trifida (Orchidaceae) and Pinus contorta (Pinaceae). Can J Bot 73:862–866

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Morales, M.A., Inouye, D.W., Leigh, M.J., Lowe, G. (2003). Considering Interactions: Incorporating Biotic Interactions into Viability Assessment. In: Brigham, C.A., Schwartz, M.W. (eds) Population Viability in Plants. Ecological Studies, vol 165. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09389-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09389-4_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07869-9

  • Online ISBN: 978-3-662-09389-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics