Befundaufnahme und Behandlung

  • Math Buck
  • Dominiek Beckers
  • Susan S. Adler
Part of the Rehabilitation und Prävention book series (REHABILITATION, volume 22)


Ziel der Behandlung ist die Wiedererlangung der maximal möglichen Funktionalität des Patienten. Die Effektivität einer Behandlung hängt in starkem Maße von der vollständig ausgeführten Befundaufnahme ab. Durch die Befundaufnahme werden zum einen die noch vorhandenen bzw. gut ausführbaren Funktionen und zum anderen die Einschränkungen (Schadens-/Einschränkungs-/Handikap-modell) bzw. die weniger gut ausführbaren oder nicht mehr vorhandenen Funktionen festgestellt.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Angel RW, Eppler WG jr (1967) Synergy of contralateral muscles in normal subjects and patients with neurologic disease. Arch Phys Med 48:233–239PubMedGoogle Scholar
  2. Devine KL, Le Veau BF, Yack J (1981) Electromyographic activity recorded from an unexercised muscle during maximal isometric exercise of the contralateral agonists and antagonist. Phys Ther 61 (6): 898–903PubMedGoogle Scholar
  3. Hellebrandt FA, Parrish AM, Houtz SMJ (1947) Cross education, the influence of unilateral exercise on the contralateral limb. Arch Phys Med 28:76–85PubMedGoogle Scholar
  4. Markos PD (1979) Ipsilateral and contralateral effects of proprioceptive neuromuscular facilitation techniques on hip motion and electromyographic activity. Phys Ther 59 (11): 1366–1373PubMedGoogle Scholar
  5. Moore JC (1975) Excitation overflow: an electromyographic investigation. Arch Phys Med Reha-bil 56:115–120Google Scholar
  6. Pink M (1981) Contralateral effects of upper extremity proprioceptive neuromuscular facilitation patterns. Phys Ther 61 (8): 1158–1162PubMedGoogle Scholar


  1. Engle RP, Canner GG (1989) Proprioceptive neuromuscular facilitation (PNF) and modified procedures for anterior cruciate ligament (ACL) instability. J Orthop Sports Phys Ther 11 (6 Dec): 230–236PubMedGoogle Scholar
  2. Hellebrandt FA (1951) Cross education: ipsilateral and contralateral effects of unimanual training. J Appl Physiol 4:135–144Google Scholar
  3. Hellebrandt FA, Houtz S J (1950) Influence of bimanual exercise on unilateral work capacity. J Appl Physiol 2:446–452Google Scholar
  4. Hellebrandt FA, Houtz SJ (1958) Methods of muscle training: the influence of pacing. Phys Ther 38:319–322Google Scholar
  5. Hellebrandt FA, Houtz S J, Eubank RN (1951) Influence of alternate and reciprocal exercise on work capacity. Arch Phys Med 32:766–776PubMedGoogle Scholar
  6. Hellebrandt FA, Houtz S J, Hockman DE, Partridge M J (1956) Physiological effects of simultaneous static & dynamic ex. Am J Phys Med 35:106–117PubMedGoogle Scholar
  7. Nelson AG, Chambers RS, McGown CM, Penrose KW (1986) Proprioceptive neuromuscular facilitation versus weight training for enhancement of muscular strength and athletic performance. J Orthop Sports Phys Ther 8:250–253Google Scholar
  8. Osternig LR, Robertson RN, Troxel RK, Hansen P (1990) Differential responses to proprioceptive neuromuscular facilitation (PNF) stretch techniques. Med Sci Sport Exer 22 (1): 106–111Google Scholar
  9. Partridge MJ (1962) Repetitive resistance exercise: a method of indirect muscle training. Phys Ther 42:233–239Google Scholar
  10. Pink M (1981) Contralateral effects of upper extremity proprioceptive neuromuscular facilitation patterns. Phys Ther 61 (8): 1158–1162PubMedGoogle Scholar
  11. Richardson C, Toppenberg R, Jull G (1990) An initial evaluation of eight abdominal exercises for their ability to provide stabilization for the lumbar spine. Australian Physiotherapy 36 (1): 6–11Google Scholar
  12. HemiplegieGoogle Scholar
  13. Brodai A (1973) Self-observations and neuro-anatomical considerations after a stroke. Brain 96: 675–694CrossRefGoogle Scholar
  14. Duncan PW, Nelson SG (1983) Weakness — a primary motor deficit in hemiplegia. Neurology Re port 7(1): 3–4Google Scholar
  15. Harro CC (1985) Implications of motor unit characteristics to speed of movement in hemiplegia. Neurology Report 9 (3): 55–61Google Scholar
  16. Tang A, Rymer WZ (1981) Abnormal force-EMG relations in paretic limbs of hemiparetic human subjects. J Neurol Neurosurg Ps 44:690–698CrossRefGoogle Scholar
  17. Trueblood PR, Walker JM, Perry J, Gronley JK (1988) Pelvic exercise and gait in hemiplegia. Phys Ther 69(1): 32–40Google Scholar
  18. Whiteley DA, Sahrmann SA, Norton BJ (1982) Patterns of muscle activity in the hemiplegic upper extremity. Phys Ther 62 (5): 641Google Scholar
  19. Winstein CJ, Jewell MJ, Montgomery J, Perry J, Thomas L (1982) Short leg casts: an adjunct to gait training hemiplegies. Phys Ther 64 (5): 713–714Google Scholar

Motor Control, Motor Learning

  1. APTA (1991) Movement Science, an American Physical Therapy Association monograph. Alexandria VAGoogle Scholar
  2. Foundation for Physical Therapy (1991) Contemporary Management of Motor Control Problems, proceedings of the II SEP conference. Alexandria VAGoogle Scholar
  3. Hellebrandt FA (1958) Application of the overload principle to muscle training in man. Arch Phys Med Rehab 37:278–283Google Scholar
  4. Light KE (1990) Information processing for motor performance in aging adults. Phys Ther 70 (12): 820–826PubMedGoogle Scholar
  5. VanSant AF (1988) Rising from a supine position to erect stance, description of adult movement and a developmental hypotheses. Phys Ther 68 (2): 185–192Google Scholar
  6. VanSant AF (1990) Life-span development in functional tasks. Phys Ther 70 (12): 788–798Google Scholar


  1. Landau WM (1974) Spasticity: the fable of a neurological demon and the emperor’s new therapy. Arch Neurol 31:217–219PubMedCrossRefGoogle Scholar
  2. Levine MG, Kabat H, Knott M, Voss DE (1954) Relaxation of spasticity by physiological technics. Arch Phys Med Rehab 35 (April): 214–223Google Scholar
  3. Perry J (1980) Rehabilitation of spasticity. In: Felman RG, Young JRR, Koella WP (eds) Spasticity — disordered motor control. Year Book, ChicagoGoogle Scholar
  4. Sahrmann SA, Norton BJ (1977) The relationship of voluntary movement to spasticity in the upper motor neuron syndrome. Ann Neurol 2:460–465PubMedCrossRefGoogle Scholar
  5. Young RR, Wiegner AW (1987) Spasticity. Clin Orthop Relat R 219:50–62Google Scholar


  1. Baker RJ, Bell GW (1991) The effect of therapeutic modalities on blood flow in the human calf. J Orthop Sports Phys Ther 13 (1): 23–27PubMedGoogle Scholar
  2. Miglietta O (1964) Electromyographic characteristics of clonus and influence of cold. Arch Phys Med Rehab 45:508–512Google Scholar
  3. Miglietta O (1962) Evaluation of cold in spasticity. Am J Phys Med 41:148–151PubMedCrossRefGoogle Scholar
  4. Olson JE, Stravino VD (1972) A review of cryotherapy. Phys Ther 52 (8): 840–853PubMedGoogle Scholar
  5. Prentice WE jr (1982) An electromyographic analysis of the effectiveness of heat or cold and stretching for inducing relaxation in injured muscle. J Orthop Sports Phys Ther 3 (3): 133–140PubMedGoogle Scholar
  6. Sabbahi MA, Powers WR (1981) Topical Anesthesia: A possible treatment method for spasticity. Arch Phys Med Rehab 62:310–314Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Math Buck
    • 1
  • Dominiek Beckers
    • 1
  • Susan S. Adler
    • 2
  1. 1.Samenwerkende Revalidatiecentral LimburgHoensbroekThe Netherlands
  2. 2.SuisunUSA

Personalised recommendations