Skip to main content

Genetic Transformation in Tagetes Species (Marigolds) for Thiophene Contents

  • Chapter
Plant Protoplasts and Genetic Engineering V

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 29))

Abstract

Tagetes Linn., commonly known as marigold, (family Asteraceae) is a genus of herbs, native to Mexico and other warmer parts of America and naturalized elsewhere in the tropics and subtropics. Several species are grown in gardens as ornamental plants. Several species included in the family Asteraceae have biologically active natural products. These include the sesquiterpene lactones of which a large number are responsible for allergic contact dermatitis in man, insecticidal isobutylamides and chromenes, carcinogenic pyrrolizidine alkaloids and, above all, the remarkable acetylenes and their sulfur derivatives (Towers and Champagne 1988). The occurrence of a significant proportion of the polyacetylenes and thiophenes found in Asteraceae species have been reported mainly, if not exclusively, from the root tissues (Bohlman et al. 1973).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albersheim P, Valent BS (1978) Host-pathogen interaction in plants. Plants when exposed to aligosaccharides of fungal origin defend themselves by accumulating antibiotics. J Cell Biol 78: 627–643

    Google Scholar 

  • Albersheim P, Darvill AG, McNeil M, Valent BS, Hahn MG, Lyon G, Sharp JK, Desjardins AE, Spellman WM, Ross LM, Robertson BK, Amen P, Franzen LE (1981) Structure and function of complex carbohydrates active in regulating plant-microbe interaction. Pure Appl Chem 53: 79–88

    Article  CAS  Google Scholar 

  • Arnason JT, Bourque G, Madhosingh C, Orr W (1986) Disruption of membrane functions in Fusarium culmorum by an acetylenic allelochemical. Biochem Syst Ecol 14: 569–571

    Article  CAS  Google Scholar 

  • Bohlman F, Burkhardt T, Zdero C (1973) Naturally occurring acetylenes. Academic Press, London, 340–463

    Google Scholar 

  • Breteler H, Ketel DH (1993) Tagetes spp. (marigolds): in vitro culture and the production of thiophenes. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 21. Medicinal and aromatic plants IV. Springer, Berlin Heidelberg New York, pp 387–412

    Google Scholar 

  • Buitelaar RM, Cesario MT, Tramper J (1992) Elicitation of thiophene production by hairy roots of Tagetes patula. Enzyme Microb Technol 14: 2–7

    Article  CAS  Google Scholar 

  • Chan GFQ, Towers GHN, Mitchell JC (1975) Ultraviolet mediated antibiotic activity of thiophene compounds of Tagetes. Phytochemistry 14: 2295–2296

    Article  CAS  Google Scholar 

  • Chilton MD, Tepfer DA, Petit A, David C, Casse Delbart F, Tempé J (1982) Agrohacterium rhizogenes inserts T-DNA into the genomes of host plant root cells. Nature 295: 432–434

    Google Scholar 

  • Croes AF, Vanden Berg AJR, Bosveld M, Breteler H, Wullems GJ (1989a) Thiophene accumulation in relation to morphology in roots of Tagetes patula: effects of auxin and transformation by Agrobacterium. Planta 179: 43–50

    Article  CAS  Google Scholar 

  • Croes AE, Aarts AM, Bosveld M, Breteler H, Wullems GJ (1989b) Control of thiophene accumulation in calli of two Tagetes species. Physiol Plant 76: 205–210

    Article  CAS  Google Scholar 

  • Downum KR, Towers GHN (1983) Analysis of thiophenes in the Tagetae ( Asteraceae) by H PLC. J Nat Prod 46: 98–103

    Google Scholar 

  • Eilert U (1987) Elicitation: methodology and aspects of application. In: Constabel F, Vasil IK (eds )

    Google Scholar 

  • Cell culture and somatic cell genetics of plants, vol 4, Academic Press, Orlando, pp 153–196

    Google Scholar 

  • Flint-Wändel J, Hjortso MA (1993) A flow cell reactor for the study of growth kinetics of single hairy roots. Biotechnol Tech 7: 447–452

    Article  Google Scholar 

  • Flores HE, Pickard JJ, Hoy MW (1988) Production of polyacetylenes and thiophenes in heterotrophic and photosynthetic root cultures of Asteraceae. In: Lam J, Breteler H, Arnason JT, Hansen L (eds) Chemistry and biology of naturally occurring acetylenes and related compounds, vol 7. Elsevier, Amsterdam, pp 233–254

    Google Scholar 

  • Fujita Y, Tabata M (1987) Secondary metabolites from plant cells — pharmaceutical applicatons and progress in commercial production. Plant Biol 3: 169–185

    CAS  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soyabean root cells. Exp Cell Res 50: 151–158

    Article  PubMed  CAS  Google Scholar 

  • Hamill JD, Parr AJ, Robins RJ, Rhodes MJC (1986) Secondary product formation by cultures of Beta vulgaris and Nicotiana rustica transformed with Agrobacterium rhizogenes. Plant Cell Rep 5: 111–114

    Article  CAS  Google Scholar 

  • Hashimoto I, Yukimune Y, Yamada Y (1986) Tropane alkaloid production in Hyoscyamus root cultures. J Plant Physiol 124: 61–75

    Article  CAS  Google Scholar 

  • Helsper JPFG, Ketel DH, Hulst AC, Breteler H (1988) Production and secretion of thiophenes by differentiated cell cultures of Tagetes In: Lam J, Breteler H, Arnason JT, Hansen L (eds) Chemistry and biology of naturally occurring acetylenes and related compounds, vol 7. Elsevier, Amsterdam, pp 279–285

    Google Scholar 

  • Hudson JB, Graham EA, Micki N, Hudson L, Towers GHN (1986) Antiviral activity of the photoactive thiophene-alpha terthienyl. Phytochem Photobiol 44: 477–484

    Article  CAS  Google Scholar 

  • Jente R, Olatunji GA, Bosold F (1981) Formation of natural thiophene derivatives from acetylenes by Tagetes patula. Phytochemistry 20 (9): 2169–2175

    Article  CAS  Google Scholar 

  • Keen NT (1975) Specific elicitors of plant phytoalexin production: determinants of race specificity in pathogens. Science 187: 74–75

    Article  PubMed  CAS  Google Scholar 

  • Keen NT, Legrand M (1980) Surface glycoproteins: evidence that they may function as race specific phytoalexin elicitors of Phytopthora megasperma f.sp. glycinea. Physiol Plant Pathol 17: 175–192

    Article  CAS  Google Scholar 

  • Ketel DH (1986) Morphological differentiation and occurrence of thoiphenes in leaf callus cultures from Tagetes species. Relation to the growth medium of the plants. Physiol Plant 66: 392–396

    Article  CAS  Google Scholar 

  • Ketel DH (1987) Distribution and accumulation of thiophenes in plant and calli of different Tagetes species. J Exp Bot 38: 322–330

    Article  CAS  Google Scholar 

  • Ketel DH, Breteler H (1988) Morphogenesis and thiophene production in cell cultures of Tagetes species. In: Lam J, Breteler H, Arnason JT, Hansen L (eds) Chemistry and biology of naturally occurring acetylenes and related compounds, vol 7. Elsevier, Amsterdam, pp 267–278

    Google Scholar 

  • Kourany E, Thorarnason J (1988) Accumulation of phototoxic thiophenes in Tagetes erecta (Asteraceae) elicited by Fusarium oxysporum. Physiol Mol Plant Pathol 33: 287–297

    Article  CAS  Google Scholar 

  • Lee SC, West CA (1981) Polygalacturonase from Rhizopus stolonifer, an elicitor of casbene synthase activity in castor bean (Ricinus communis) seedlings. Plant Physiol 67: 33–39

    Google Scholar 

  • Martin SM, Rose D (1976) Growth of plant cell (Ipomoea) suspension cultures at controlled pH levels. Can J Bot 54: 1264–1270

    Article  CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31: 426–428

    Article  CAS  Google Scholar 

  • Moesta P, Grisebach H (1981) Investigation of the mechanism of phytoalexin metabolism in soyabean. Nature (Lond) 286: 710–711

    Article  Google Scholar 

  • Monod J (1950) La technique de culture continue theorie et applications. Ann Inst Pasteur (Paris) 79: 390–410

    CAS  Google Scholar 

  • Mukundan U, Hjortso M (1990a) Thiophene content in normal and transformed root cultures of Tagetes erecta. A comparison with thiophene content in roots of intact plants. J Exp Bot 41 (232): 1497–1501

    Article  CAS  Google Scholar 

  • Mukundan U, Hjortso M (1990b) Thiophene accumulation in hairy roots of Tagetes patula in response to fungal elicitors. Biotechnol Lett 12 (8): 609–614

    Article  CAS  Google Scholar 

  • Mukundan U, Hjortso M (1990e) Effect of fungal elicitors on thiophene production in hairy root cultures of Tagetes patula. Appl Microbiol Biotechnol 33: 145–147

    Article  CAS  Google Scholar 

  • Mukundan U, Hjortso M (199la) Growth and thiophene accumulation by hairy root cultures of Tagetes patula in media of varying initial pH. Plant Cell Rep 9: 627–630

    Google Scholar 

  • Mukundan U, Hjortso M (1991b) Effect of light on growth and thiophene accumulation in transformed roots of Tagetes patula. J Plant Physiol 138: 252–255

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–497

    Article  CAS  Google Scholar 

  • Norton RA, Finlayson AJ, Towers GHN (1985) Thiophene production by crown galls and callus tissues of Tagetes patula. Phytochemistry 24: 719–722

    Article  CAS  Google Scholar 

  • Petit A, David C, Dahl GA, Ellis JG, Guyon P, Delbart FC, Tempé J (1983) Further extension of the opine concept plasmids in Agrobacterium rhizogenes cooperate for opine degradation. Mol Gen Genet 190: 204–214

    Article  CAS  Google Scholar 

  • Quattrocchio F, Benvennto E, Tavazza R, Cuozzo L, Ancora G (1986) A study of the possible role of auxin in potato hairy root tissue. J. Plant Physiol 123: 143–149

    Article  CAS  Google Scholar 

  • Sutfeld R (1982) Distribution of thiophene derivatives in different organs of Tagetes patula seedlings grown under various conditions. Planta 156: 536–540

    Article  Google Scholar 

  • Sutfeld R, Towers GHN (1982) 5-(4-acetoxy-l-butinyl) 2,2’-bithiophene acetate esterase from Tagetes patula. Phytochemistry 21(2):277–279

    Google Scholar 

  • Sweet HC, Bolton WE (1979) The surface decontamination of seeds to produce axenic seedlings. Am J Bot 66 (6): 692–698

    Article  CAS  Google Scholar 

  • Towers GHN, Champagne DE (1988) Medicinal phytochemistry of the Compositae. The activities of selected acetylenes and their suffer derivates. In: Lam J, Breteler H, Arnason JT, Hansen L (eds) Chemistry and biology of naturally occurring acetylenes and related compounds, vol 7. Elsevier, Amsterdam, pp 139–149

    Google Scholar 

  • Uhlenbroek JH, Bijloo JD (1959) Investigations on nematicides II. Isolation and structure of a second nematicidal principle isolated from Tagetes roots. Reel Tray Chim Pays-Bas 78: 382–390

    Article  CAS  Google Scholar 

  • USDA (1960) Index of plant diseases in the United States. Agriculture handbook 165. Crop Research Service, United States Department of Agriculture, Washington DC

    Google Scholar 

  • Westcott RJ (1988) Thiophene production from hairy roots of Tagetes. In: Robins RJ, Rhodes MJC (eds) Manipulating secondary metabolism in culture. Cambridge University Press, Cambridge, pp 233–237

    Google Scholar 

  • White P (1934) Potentially unlimited growth of excised tomato root tips in a liquid medium. Plant Physiol 9: 585–600

    Article  PubMed  CAS  Google Scholar 

  • Wilson PDG, Hilton MG, Robins RJ, Rhodes MJC (1987) Fermentation studies of transformed root cultures. In: Moody GW, Baker PB (eds) Bioreactors and biotransformations. Elsevier, London, pp 38–51

    Google Scholar 

  • Yoshikawa M (1978) Diverse modes of action of biotic and abiotic phytoalexin elicitors. Nature (Lond) 275: 546–547

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hjortso, M., Mukundan, U. (1994). Genetic Transformation in Tagetes Species (Marigolds) for Thiophene Contents. In: Bajaj, Y.P.S. (eds) Plant Protoplasts and Genetic Engineering V. Biotechnology in Agriculture and Forestry, vol 29. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09366-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09366-5_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08182-8

  • Online ISBN: 978-3-662-09366-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics