Skip to main content

Regeneration of Plants from Protoplasts of Beta vulgaris (Sugar Beet)

  • Chapter
Plant Protoplasts and Genetic Engineering V

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 29))

Abstract

The genus Beta (family Chenopodiaceae) consists of 13 species. All cultivated forms of beet belong to the species Beta vulgaris ssp. vulgaris in the section Beta. Early types of beet with a swollen root were probably domesticated from ancestral maritime (Beta vulgaris ssp. maritima) populations (Fig. 1; von Boguslawski 1984). In ancient Roman and Greek handbooks of agricultural production, the beet is described as a leaf crop. The root was, at that time, only used for medical purposes. In the 17th century the beet root is found as a vegetable in some recipes. Since the beginning of the 18th century the beet has been used as animal feed. However, it was not until after 1800 that fodder beet became an established crop in mixed farming systems in Europe. Sugar beet is considered to have originated from one of these fodder beet populations (Toxopeus 1984). Today, the most widely cultivated forms of Beta vulgaris are sugar beet, fodder beet, garden beet (beetroot), and leaf beet (Swiss chard, spinach beet).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bhat SR, Ford-Lloyd BV, Callow JA (1985) Isolation of protoplasts and regeneration of callus from suspension cultures of cultivated beets. Plant Cell Rep 4: 348–350.

    Article  Google Scholar 

  • Bhat SR, Ford-Lloyd BV, Callow JA (1986a) Isolation and culture of mesophyll protoplasts of garden, fodder and sugar beets using a nurse culture system: callus formation and organogenesis. J Plant Physiol 124: 419–423

    Article  CAS  Google Scholar 

  • Bhat SR, Ford-Lloyd BV, Callow JA (1986b) Tissue and protoplast culture in cultivated beets. In: Horn W, Jensen CJ, Odenbach W, Schieder O (eds) Genetic manipulation in plant breeding. de Gruyter, Berlin, pp 453–455

    Google Scholar 

  • Biyasheva AE Molotkovskii YuG (1990) Use of the fluorescent indicator fura 2 to measure the concentration of cytosolic Ca’ in protoplasts. Soy Plant Physiol 37: 460–464

    Google Scholar 

  • Bornman JF, Bornman CH, Bjorn LO (1982) Effects of ultraviolet radiation on viability of isolated Beta vulgaris and Hordeum vulgare protoplasts. Z Pflanzenphysiol 105: 297–306

    Google Scholar 

  • Coe GE, Steward D (1977) Cytoplasmic male sterility self-fertility, and monogermness in Beta maritima L. J Am Soc Sugar Beet Technol 19: 257–261

    Google Scholar 

  • Dalke L, Szota M (1986) A search for new sources of male sterility for breeding hybrid sugar beet varieties. Genet Pol. 27: 81–88

    Google Scholar 

  • De Bock ThSM (1986) The genus Beta: domestication, taxonomy and interspecific hybridization for plant breeding. Acta Hortic 182: 335–343

    Google Scholar 

  • De Greef W, Jacobs M (1979) In vitro culture of sugar beet: description of a cell line with a high regeneration capacity. Plant Sci Lett 17: 55–61

    Article  Google Scholar 

  • Dubinina IM, Kudryavtseva LF, Burakhanova EA (1989) Isolation and characterization of protoplasts and vacuoles from sugar beet leaf mesophyll. Sov Plant Physiol 3: 392–399

    Google Scholar 

  • Eady C, Warren G, Lindsey K, Jones MGK (1988) Electrofusion and electroporation of sugar beet (Beta vulgaris L.) protoplasts. In Puite KJ, Dons JJM, Huizing HJ, Kool AJ, Koornneef M, Krens FA (eds) Progress in protoplast research. Kluwer Academic, Dordrecht, pp 261–262

    Chapter  Google Scholar 

  • Famelaer I, de Brouwer D, Negrutiu I, Jacobs M (1984) The transfer of genetic material in higher plants, through egg cell transformation and fusion with gamma-irradiated donor pollen or protoplasts. In: Novak FJ, Havel L, Dolezel J (eds) Proc Int Symp: Plant tissue and cell culture application to crop improvement. Czechoslovak Acad Sci, Prague, pp 417–418

    Google Scholar 

  • FAO (1989) Production year book. FAO, Rome

    Google Scholar 

  • Ford-Lloyd BV, Bhat S (1986) Problems and prospects for the use of protoplasts in beet breeding. In: Horn W, Jensen CJ, Odenbach W, Schieder O (eds) Genetic manipulation in plant breeding. de Gruyter, Berlin, pp 437–440

    Google Scholar 

  • Frearson EM, Power JB, Cocking EC (1973) The isolation, culture, and regeneration of Petunia leaf protoplasts. Dev Biol 33: 130–137

    Article  PubMed  CAS  Google Scholar 

  • Freytag AH, Anand SC, Rao-Ardelli AP, Owens LD (1988) An improved medium for adventitious shoot formation and callus induction in Beta vulgaris L in vitro Plant Cell Rep 7: 30–34

    Google Scholar 

  • Gallois P, Lindsey K, Malone R, Kreis M, Jones MGK (1992) Gene rescue in plants by direct gene transfer of total genomic DNA into protoplasts. Nucleic Acids Res 20: 3977–3982

    Article  PubMed  CAS  Google Scholar 

  • Getz H-P, Knauer D, Willenbrink J (1987a) Transport of sugars across the plasma membrane of beetroot protoplasts. Planta 171: 185–196

    Article  CAS  Google Scholar 

  • Getz H-P, Schulte-Altedorneburg M, Willenbrink J (19876) Effects of fusicoccin and abscisic acid on glucose uptake into isolated beetroot protoplasts. Planta 171: 235–240

    Google Scholar 

  • Gilmour DM, Davey MR, Cocking EC (1989) Production of somatic hybrid tissues following chemical and electrical fusion of protoplasts from albino cell suspensions of Medicago sativa and M. borealis. Plant Cell Rep 8: 29–32

    Article  Google Scholar 

  • Günther G, Baumann I, Bogs R, Knösche R (1986) Comparative cytological investigations on protoplasts, tissue cultures and seedlings from Beta vulgaris (sugar-beet). In: Int. Symp Nuclear techniques and in vitro culture for plant improvement. IAEA/FAO, Vienna, pp 83–89

    Google Scholar 

  • Gupta P, Ganesh R, Mohanty P (1982) Effect of some senescence retardant pretreatments on yield of protoplasts from spinach beet (Beta vulgaris) leaves. Biochem Physiol Pflanz 177: 721–723

    CAS  Google Scholar 

  • Hall RD, Krens FA (1988) The production and electrofusion of Beta cytoplasts. In: Puite KJ, Dons JJM, Huizing HJ, Kool AJ, Koomneef M,Krens FA(eds) Progress in protoplast research. Kluwer Academic, Dordrecht. pp 263–264

    Google Scholar 

  • Hall RD, Krens FA, Rouwendal GJA (1992a) DNA radiation damage and asymmetric somatic hybridization: is UV a potential substitute or supplement to ionising radiation in fusion experiments? Physiol Plant 85: 319–324

    Article  CAS  Google Scholar 

  • Hall RD, Rouwendal GJA, Krens FA (1992b) Asymmetric somatic cell hybridization in plants I. The early effects of (sub)lethal doses of UV and gamma radiation on the cell physiology and DNA integrity of cultured sugar beet (Beta vulgaris L.) protoplasts. Mol Gen Genet 234: 306–314

    PubMed  CAS  Google Scholar 

  • Hall RD, Rouwendal GJA, Krens FA (1992c) Asymmetric somatic cell hybridization in plants Il. Electrophoretic analysis of radiation-induced DNA damage and repair following the exposure of sugar beet (Beta vulgaris L.) protoplasts to UV and gamma rays. Mol Gen Genet 234: 315–324

    PubMed  CAS  Google Scholar 

  • Hall RD, Pedersen C, Krens FA, (1993) Transfer of cytoplasm from new Beta CMS sources to sugar beet by asymmetric fusion. II. Improvements of protoplast culture protocols to enhance success in fusion experiments. Plant Cell Rep 12: 339–342

    Google Scholar 

  • Hall RD, Pedersen C, Krens FA (1994) Progress towards the development of a general somatic hybridization protocol for Beta. J Sugar beet Res (in press)

    Google Scholar 

  • Halldén C, Bryngelsson T, Bosemark NO (1989) Two new types of cytoplasmic male sterility found in wild Beta beets. Theor Appl Genet 75: 561–568

    Article  Google Scholar 

  • Joersbo M, Brunstedt J (1990a) Direct gene transfer to plant protoplasts by electroporation by alternating, rectangular and exponentially decaying pulses. Plant Cell Rep 8: 701–705

    Article  CAS  Google Scholar 

  • Joersbo M, Brunstedt J (1990b) Direct gene transfer to plant protoplasts by mild sonication. Plant Cell Rep 9: 207–210

    Article  CAS  Google Scholar 

  • Joersbo M, Brunstedt J (1990e) Inoculation of sugar beet protoplasts with beet necrotic yellow vein virus particles by mild sonication. J Virol Methods 29: 63–70

    Article  PubMed  CAS  Google Scholar 

  • Kallerhoff J, Perez P, Bouzoubaa S, Ben Tahar S, Perret J (1990) Beet necrotic yellow vein virus coat protein-mediated protection in sugar beet (Beta vulgaris L.) protoplasts. Plant Cell Rep 9: 224–228

    Article  CAS  Google Scholar 

  • Kao KN, Michayluk MK (1975) Nutritional requirements for growth of Vinca hajastana cells and protoplasts at very low density in liquid media. Planta 126: 105–110

    Article  CAS  Google Scholar 

  • Krens FA, Hall RD (1992) Celbiologie legt basis voor cybride-productie. Prophyta 1: 12–16

    Google Scholar 

  • Krens FA, Jamar D (1988) Studies towards a protoplast isolation and culture procedure in sugar beet applicable to a variety of genotypes. In: Puite KJ, Dons JJM, Huizing HJ, Kool AJ, Koornneef M, Krens FA (eds) Progress in protoplast research. Kluwer Academic, Dordrecht, pp 69–70

    Chapter  Google Scholar 

  • Krens FA, Jamar D (1989) The role of explant source and culture conditions on callus induction and shoot regeneration in sugar beet (Beta vulgaris L.). J Plant Physiol 134: 651–655

    Article  CAS  Google Scholar 

  • Krens FA, Jamar D, Rouwendal GJA, Hall RD (1990) Transfer of cytoplàsm from new Beta CMS sources to sugar beet by asymmetric fusion. 1. Shoot regeneration from mesophyll protoplasts and characterization of regenerated plants. Theor Appl Genet 79: 390–396

    Google Scholar 

  • Li X-F, Chen Y-Q (1992) Direct embryogenesis from protoplasts of sugar beet. Acta Bot Sin 34: 402–404

    Google Scholar 

  • Lindsey K, Jones MGK (1987a) The permeability of electroporated cells and protoplasts of sugar beet. Planta 172: 346–355

    Article  Google Scholar 

  • Lindsey K, Jones MGK (1987b) Transient gene expression in electroporated protoplasts and intact cells of sugar beet. Plant Mol Biol 10: 43–52

    Article  CAS  Google Scholar 

  • Lindsey K, Jones MGK (1989) Stable transformation of sugar beet protoplasts by electroporation. Plant Cell Rep 8: 71–74

    Article  Google Scholar 

  • Lörz H, Paszkowski J, Dierks-Ventling C, Portrykus I (1981) Isolation and characterization of cytoplasts and miniprotoplasts derived from protoplasts of cultured cells. Physiol Plant 53: 385–391

    Article  Google Scholar 

  • Madsen PH, Pedersen HC (1990) Transfer of cytoplasmic male sterility from CMS plants to normal fertile sugar beet (Beta vulgaris) plants via asymmetric protoplast fusion. Abstr 7th Int Congr Plant tissue and cell culture, Amsterdam p 214

    Google Scholar 

  • Müller B, Ryschka U (1987) Effect of various osmotic substances on protoplast isolation by enzymes. Biochem Physiol Pflanz 182: 183–186

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–497

    Article  CAS  Google Scholar 

  • Nam L-S, Landovà B, Landa Z (1976) Isolation of protoplasts from sugar beet leaves. Biol Plant 18: 389–392

    Article  Google Scholar 

  • Owen FV (1945) Cytoplasmically inherited male sterility in sugar beet. J Agric Res 71: 423–440

    Google Scholar 

  • Pedersen C, Hall RD, Krens FA (1993) Petioles as the tissue source for the isolation and culture of Beta vulgaris and B. maritima protoplasts. Plant Sci 95: 89–97

    Article  Google Scholar 

  • Pedersen HC, Larsen AB, Vamling K, Keimer B (1988) Inactivation of sugar beet protoplasts using acridine orange, an agent for late selection of fusion products. In: Puite KJ, Dons JJM, Huizing JH, Kool AJ, Koornneef M, Krens FA (eds) Progress in protoplast research. Kluwer Academic, Dordrecht, pp 265–266

    Chapter  Google Scholar 

  • Ritchie GA, Short KC, Davey MR (1989) In vitro shoot regeneration from callus, leaf axils and petioles of sugar beet (Beta vulgaris L.) J Exp Bot 40: 277–283

    Google Scholar 

  • Saumitou-Laprade P, Rouwendal GJA, Cuguen J, Krens FA, Michaelis G (1993) Different CMS sources found in Beta vulgaris ssp. maritima: mitochondrial variability in wild populations revealed by a rapid screening procedure. Theor Appl Genet 85: 529–535

    Article  CAS  Google Scholar 

  • Saunders JW, Doley WP, Theurer JC, Yu MH (1990) Somaclonal variation in sugar beet. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry vol. 11, Somaclonal variation in crop improvement 1. Springer, Berlin Heidelberg New York, pp 465–490

    Google Scholar 

  • Schlangstedt M, Hermans B, Zoglauer K, Schieder 0 (1992) Culture of sugar beet (Beta vulgaris L.) protoplasts in alginate-callus formation and root organogenesis. J Plant Physiol 140: 339–344

    CAS  Google Scholar 

  • Schlangstedt M, Zoglauer K, Lenzner S, Hermans B, Jacobs M (1994) Improvement of sugar beet (Beta vulgaris) protoplast culture: leaf petioles as a protoplast source. J. PI. Physiol. 143: 227–233.

    Google Scholar 

  • Schmidt R, Poole RJ (1980) Isolation of protoplasts and vacuoles from storage tissue of red beet. Plant Physiol 66: 25–28

    Article  PubMed  CAS  Google Scholar 

  • Smolenskaya IN, Raldugina GN (1982) Protoplast culture from sugar beet cell suspensions. Soy Plant Physiol 28: 1022–1029

    Google Scholar 

  • Szabados L, Gagger C (1985) Callus formation from protoplasts of a sugar beet cell suspension culture. Plant Cell Rep 4: 195–198

    Article  CAS  Google Scholar 

  • Tétu T, Sangwan RS, Sangwan-Norreel BS (1987) Hormonal control of organogenesis and somatic embryogenesis in Beta vulgaris callus. J Exp Bot 38: 506–517

    Article  Google Scholar 

  • Toxopeus H (1984) De historie van de Europese Kruisbloemige en bietengewassen. Bedrijfsontwikkeling 15: 537–542

    Google Scholar 

  • van Ark HF, Hall RD, Creemers-Molenaar J, Krens FA (1992) High yields of cytoplasts from protoplasts of Lolium perenne and Beta vulgaris using density gradient centrifugation. Plant Cell Tissue Organ Cult 31: 223–232

    Google Scholar 

  • von Boguslawski (1984) Zur Geschichte der Beta-Rübe als Kulturpflanze bis zum Beginn des 19. Jahrhunderts. In: Geschichte der Zuckerrübe, 200 Jahre Anbau und Züchtung. Dr. Albets Bartens, Berlin-Nikolassee, pp 13–21

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hall, R.D., Pedersen, C., Krens, F.A. (1994). Regeneration of Plants from Protoplasts of Beta vulgaris (Sugar Beet). In: Bajaj, Y.P.S. (eds) Plant Protoplasts and Genetic Engineering V. Biotechnology in Agriculture and Forestry, vol 29. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09366-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09366-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08182-8

  • Online ISBN: 978-3-662-09366-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics