Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 125))

Abstract

Circadian rhythmicity has been observed in several biochemical, hormonal, and physiological parameters, and evidence exists that disturbances in these rhythms are involved in disease processes such as Cushing’s syndrome, secondary hypertension, and affective disorders. A crucial step in physiological regulation and signalling is the transduction of signals from the extracellular to the intracellular space crossing the cell membrane. One of the major pathways involved in transmembraneous signalling is the combination of an extracellular receptor and an intracellular effector molecule responsible for the synthesis of an intracellular second messenger, e.g. the β-adrenoceptor—G-protein—adenylyl cyclase complex or the α-adrenoceptor—G-protein—phospholipase C system. In the case of lipid-soluble mediators such as nitric oxide, an intracellularly located effector molecule, i.e. the soluble guanylyl cyclase, may be the target protein. The present review will focus on circadian rhythms in the above-mentioned second messenger pathways involved in formation of cAMP by adenylyl cyclase, of cGMP by guanylyl cyclases, and of inositol phosphates by phospholipase C. Since the contribution of second messengers to the function of the clock itself has been discussed elsewhere (Prosser and Gillette 1991; Takahashi et al. 1993; Takahashi 1993) and is reviewed in other chapters of this handbook, this point will not be discussed here. We shall also restrict our review to data obtained in humans and in other mammalian species; results concerning unicellular organisms were subject of detailed reviews (Edmunds 1988; Edmunds et al. 1992) and are addressed in other chapters of the handbook.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anand-Srivastava MB, Trachte GJ (1993) Atrial natriuretic factor receptors and signal transduction mechanisms. Pharmacol Rev 45: 455–497

    PubMed  CAS  Google Scholar 

  • Beavo JA, Conti M, Heaslip RJ (1994) Multiple cyclic nucleotide phosphodiesterases. Mol Pharmacol 46: 399–405

    PubMed  CAS  Google Scholar 

  • Behne S, Becker HJ, Liefhold J, Kaiser R, Lemmer B (1990) On the chronopharmacokinetics, effects on cardiovascular functions, and plasma cAMP of oral nifedipine in healthy subjects. In: Lemmer B, Huller H (eds) Clinical chronopharmacology, vol 6. Zuckschwerdt, Munich, pp 59–63

    Google Scholar 

  • Berridge MJ, Irvine RF (1984) Inositol-trisphosphate, a novel second messenger in cellular signal transduction. Nature 312: 315–321

    Article  PubMed  CAS  Google Scholar 

  • Brodde OE (1994) Beta-adrenoceptors in cardiac disease. Pharmacol Ther 60:405–430 Choma PP, Puri SK, Volicer L (1979) Circadian rhythm of cyclic nucleotide and GABA levels in the rat brain. Pharmacology 19: 307–314

    Google Scholar 

  • Edmunds LN (1988) Cellular and molecular bases of biological clocks, 1st edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Edmunds LN, Carré IA, Tamponnet C, Tong J (1992) The role of ions and second messengers in circadian clock function. Chronobiol Int 9: 180–200

    Article  PubMed  CAS  Google Scholar 

  • Endres P, Roeren T (1979) Lack of a diurnal plasma adenosine 3’,5’-monophosphate rhythm. J Clin Endocrinol Metab 48: 872–873

    Article  PubMed  CAS  Google Scholar 

  • Exton JH (1994) Phosphoinositide phospholipases and G-proteins in hormone action. Annu Rev Physiol 56: 349–369

    Article  PubMed  CAS  Google Scholar 

  • Gagliardino JJ, Pessacq MT, Hernandez RE, Rebolledo OR (1978) Circadian variations in serum glucagon and hepatic glycogen and cyclic AMP concentrations. J Endocrinol 78: 297–298

    Article  PubMed  CAS  Google Scholar 

  • Garte SJ, Belman S (1980) Diurnal variation in cyclic nucleotide levels in normal and phorbol myristate acetate treated mouse epidermis. J Invest Dermatol 74: 224–225

    Article  PubMed  CAS  Google Scholar 

  • Guillemant J, Guillemant S (1981) Effect of exogenous and endogenous ACTH on adrenocortical cyclic GMP in the rat. J Steroid Biochem 14: 557–561

    Article  PubMed  CAS  Google Scholar 

  • Guillemant J, Guillemant S (1986) Development of adrenocortical cyclic nucleotide (cyclic AMP and cyclic GMP) and corticosterone circadian rhythms in male and female rats. Chronobiol Int 3: 155–160

    Article  PubMed  CAS  Google Scholar 

  • Guillemant S, Eurin J, Guillemant J, Reinberg A (1978) Rythmes circadiens des nucléotides cycliques ( AMP et GMP cycliques) du cortex surrénalien du rat mâle adulte. Ann Endocrinol 39: 49–50

    Google Scholar 

  • Guillemant J, Guillemant S, Reinberg A (1980a) Circadian variation of adrenocortical cyclic nucleotides (cyclic AMP and cyclic GMP) in hypophysectomized rats. Experientia 36: 367–368

    Article  PubMed  CAS  Google Scholar 

  • Guillemant J, Reinberg A, Guillemant S (1980b) Study of the role of adrenocortical cyclic AMP and cyclic GMP on ascorbic acid depletion and corticosteroidogenesis by analysis of circadian rhythms. Acta Endocrinol 95: 382–387

    PubMed  CAS  Google Scholar 

  • Hardouin S, Bourgeois F, Besse S, Machida CA, Swynghedauw B, Moalic JM (1993) Decreased accumulation of ßl-adrenergic receptor, Gas and total heavy chain messenger RNAs in the left ventricle of senescent rat heart. Mech Ageing Dev 71: 169–188

    Google Scholar 

  • Joanny P, Chouvet G, Giannellini F, Vial M (1984) Brain diurnal levels of adenosine 3’, 5’ cyclic monophosphate in C57 BL/6 and BALB/C mice. Chronobiol Int 1: 37–40

    Article  PubMed  CAS  Google Scholar 

  • Kafka MS, Benedito MA, Roth RH, Steele LK, Wolfe WW, Catravas GN (1986) Circadian rhythms in catecholamine metabolites and cyclic nucleotide production. Chronobiol Int 3: 101–115

    Article  PubMed  CAS  Google Scholar 

  • Kant GJ, Sessions GR, Lenox RH, Meyerhoff JL (1981) The effects of hormonal and circadian cycles, stress, and activity on levels of cyclic AMP and cyclic GMP in pituitary, hypothalamus, pineal and cerebellum of female rats. Life Sci 29: 24912499

    Google Scholar 

  • König P, Carpenter M, White AA (1980) Urinary cyclic adenosine 3’,5’-monophosphate (cAMP) and cyclic guanosine 3’,5’-monophosphate (cGMP) in asthmatic and normal children. Eur J Respir Dis 61: 218–226

    PubMed  Google Scholar 

  • Kopp L, Lin T, Tucci JR (1977) Circadian rhythms in the urinary excretion of cyclic 3’,5’-adenosine monophosphate (cyclic AMP) and cyclic 3’,5’-guanosine mono-phosphate (cyclic GMP) in human subjects. J Clin Endocrinol Metab 44: 673–680

    Article  PubMed  CAS  Google Scholar 

  • Lang PH, Bissinger H, Lemmer B (1985) Circadian rhythm and seasonal variations in basal cAMP content of rat heart ventricles. Chronobiol Int 2: 41–45

    Article  PubMed  CAS  Google Scholar 

  • Lemmer B (1989) Circadian variations in the effects of cardiovascular active drugs. In: von Arnim T, Maseri A (eds) Predisposing conditions for acute ischemic syndromes. Steinkopff, Darmstadt, p 1

    Google Scholar 

  • Lemmer B, Wald C (1990) Influence of age on the rhythm in basal and forskolinstimulated adenylate cyclase activity of the rat heart. Chronobiol Int 7: 107–111

    Article  PubMed  CAS  Google Scholar 

  • Lemmer B, Witte K (1989) Circadian variation of the in vitro stimulation of adenylate cyclase in rat heart tissue. Eur J Pharmacol 159: 311–315

    Article  PubMed  CAS  Google Scholar 

  • Lemmer B, Bissinger H, Lang PH (1986) Effect of forskolin on cAMP levels in rat heart at different times of day. IRCS Med Sci 14: 1103–1104

    CAS  Google Scholar 

  • Lemmer B, Lang PH, Schmidt S, Bärmeier H (1987a) Evidence for circadian rhythmicity of the ß-adrenoceptor-adenylate cyclase-cAMP-phosphodiesterase system in the rat. J Cardiovasc Pharmacol 10 [Suppl 4]: S138 — S140

    CAS  Google Scholar 

  • Lemmer B, Bärmeier H, Schmidt S, Lang PH (1987b) On the daily variation in the betareceptor—adenylate cyclase-cAMP—phosphodiesterase system in rat forebrain. Chronobiol Int 4: 469–475

    Article  PubMed  CAS  Google Scholar 

  • Lemmer B, Carlebach R, Stiller M, Ohm TG, Nitsch R (1991) Dose-dependent stimulation of adenylate cyclase in rat hippocampal tissue by isoprenaline, Gpp(NH)p and forskolin: lack of circadian phase-dependency. Brain Res 565: 225–230

    Article  PubMed  CAS  Google Scholar 

  • Lemmer B, Mattes A, Böhm M, Ganten D (1993) Circadian blood pressure variation in transgenic hypertensive rats. Hypertension 22: 97–101

    Article  PubMed  CAS  Google Scholar 

  • Lemmer B, Brühl T, Witte K, Pflug B, Köhler W, Touitou Y (1994a) Effects of bright light on circadian patterns of cyclic adenosine monophosphate, melatonin and cortisol in healthy subjects. Eur J Endocrinol 130: 472–477

    Article  PubMed  CAS  Google Scholar 

  • Lemmer B, Witte K, Makabe T, Ganten D, Mattes A (1994b) Effects of enalaprilat on circadian profiles in blood pressure and heart rate of spontaneously and transgenic hypertensive rats. J Cardiovasc Pharmacol 23: 311–314

    Article  PubMed  CAS  Google Scholar 

  • Logue FC, Fraser WD, O’Reilly DSJ, Beastall GH (1989) The circadian rhythm of intact parathyroid hormone (1–84) and nephrogenous cyclic adenosine mono-phosphate in normal men. J Endocrinol 121: R1 - R3

    Article  PubMed  CAS  Google Scholar 

  • Markianos M, Lykouras L (1981) Circadian rhythms of dopamine-ß-hydroxylase and CAMP in plasma of controls and patients with affective disorders. J Neural Transmission 50: 149–155

    Article  CAS  Google Scholar 

  • Marks F, Grimm W (1972) Diurnal fluctuation and ß-adrenergic elevation of cyclic AMP in mouse epidermis in vivo. Nature 240: 178–179

    CAS  Google Scholar 

  • Mazzola-Pomietto P, Azorin JM, Tramoni V, Jeanningros R (1994) Relation between lymphocyte ß-adrenergic responsivity and the severity of depressive disorders. Biol Psychiatry 35: 920–925

    Article  PubMed  CAS  Google Scholar 

  • Mertz LM, Pedersen RC (1989) The kinetics of steroidogenesis activator polypeptide in the rat adrenal cortex. J Biol Chem 264: 15274–15279

    PubMed  CAS  Google Scholar 

  • Mikuni M, Saito Y, Koyama T, Daiguji M, Yamashita I, Yamakazi K, Honma M, Ui M (1978) Circadian variations in plasma 3’:5’-cyclic adenosine monophosphate and 3’:5’-cyclic guanosine monophosphate of normal adults. Life Sci 22: 667–672

    Article  PubMed  CAS  Google Scholar 

  • Mobley PL, Manier DH, Sulser F (1983) Norepinephrine-sensitive adenylate cyclase system in rat brain: role of adrenal corticosteroids. J Pharmacol Exp Ther 226: 71–77

    PubMed  CAS  Google Scholar 

  • Moore RY, Qavi HB (1971) Circadian rhythm in adrenal adenyl cyclase and corticosterone abolished by medial forebrain bundle transection in the rat. Experientia 27: 249–250

    Article  PubMed  CAS  Google Scholar 

  • Murad F, Pak CYC (1972) Urinary excretion of adenosine 3’5’-monophosphate and guanosine 3’5’-monophosphate. N Engl J Med 286: 1382–1387

    Article  PubMed  CAS  Google Scholar 

  • Murakami N, Takahashi K (1983) Circadian rhythm of adenosine-3’,5’-monophosphate content in suprachiasmatic nucleus (SCN) and ventromedial hypothalamus ( VMH) in the rat. Brain Res 276: 297–304

    Google Scholar 

  • Panza JA, Epstein SE, Quyyumi AA (1991) Circadian variation in vascular tone and its relation to a-sympathetic vasoconstrictor activity. N Engl J Med 325: 986–990

    Article  PubMed  CAS  Google Scholar 

  • Perez E, Zamboni G, Amici R, Fadiga L, Parmeggiani PL (1991) Ultradian and circadian changes in the cAMP concentration in the preoptic region of the rat. Brain Res 551: 132–135

    Article  PubMed  CAS  Google Scholar 

  • Pleschka K, Heinrich A, Witte K, Lemmer B (1996) Diurnal and seasonal changes in sympathetic signal transduction in cardiac ventricles of European hamsters. Am J Physiol 270: R304 — R309

    PubMed  CAS  Google Scholar 

  • Prosser RA, Gillette MU (1991) Cyclic changes in cAMP concentration and phosphodiesterase activity in a mammalian circadian clock studied in vitro. Brain Res 568: 185–192

    Article  PubMed  CAS  Google Scholar 

  • Richards AM, Wittert G, Espiner EA, Yandle TG, Frampton C, Ikram H (1991) Prolonged inhibition of endopeptidase 24.11 in normal man: renal, endocrine and haemodynamic effects. J Hypertens 9: 955–962

    Article  PubMed  CAS  Google Scholar 

  • Sagel J, Colwell JA, Loadholt CB, Lizarralde G, Green AS (1973) Circadian rhythm in the urinary excretion of cyclic 3’,5’-adenosine monophosphate in man. J Clin Endocrinol Metab 37: 570–573

    Article  PubMed  CAS  Google Scholar 

  • Schmidt HHHW, Lohmann SM, Walter U (1993) Minireview. The nitric oxide and cGMP signal transduction system: regulation and mechanism of action. Biochem Biophys Acta 1178: 153–175

    Article  PubMed  CAS  Google Scholar 

  • Schnecko A, Witte K, Lemmer B (1995) Effects of the angiotensin II receptor antagonist losartan on 24-hour blood pressure profiles of primary and secondary hypertensive rats. J Cardiovasc Pharmacol 26: 214–221

    Article  PubMed  CAS  Google Scholar 

  • Schwarz W, Schell H, Hornstein OP, Bernlochner W, Weghorn C (1981) Variations of cAMP in epidermis and plasma of male adult subjects. Dermatologica 162: 230–235

    Article  PubMed  CAS  Google Scholar 

  • Schwarz W, Schell H, Bachmann I, Hellmund HW (1984) Cyclic nucleotides in human epidermis — diurnal variations. J Invest Dermatol 82: 119–121

    Article  PubMed  CAS  Google Scholar 

  • Seitz HJ, Müller MJ, Nordmeyer P, Krone W, Tarnowski W (1976) Concentration of cyclic AMP in rat liver as a function of the insulin/glucagon ratio in blood under standardized physiological conditions. Endocrinology 99: 1313–1318

    Article  PubMed  CAS  Google Scholar 

  • Stone JF, Polk ML, Dobbs JW, Graham ME, Scheving LE (1974) Circadian variation in human urinary cyclic AMP and the effect of different diets on this rhythm. Int J Chronobiol 2: 163–170

    PubMed  CAS  Google Scholar 

  • Tang WJ, Gilman AG (1992) Adenylyl cyclases. Cell 70: 869–872

    Article  PubMed  CAS  Google Scholar 

  • Takahashi JS (1993) Circadian clocks à la CREM. Nature 365: 299–320

    Article  PubMed  CAS  Google Scholar 

  • Takahashi JS, Kornhauser JM, Koumenis C, Eskin A (1993) Molecular approaches to understand circadian oscillations. Annu Rev Physiol 55: 729–753

    Article  PubMed  CAS  Google Scholar 

  • Tiedgen M, Seitz HJ (1980) Dietary control of circadian variations in serum insulin, glucagon and hepatic cyclic AMP. J Nutr 110: 876–882

    PubMed  CAS  Google Scholar 

  • Valases C, Wright SJ, Catravas GN (1980) Diurnal changes in cyclic nucleotide levels in the hypothalamus of the rat. Exp Brain Res 40: 261–264

    Article  PubMed  CAS  Google Scholar 

  • Witte K, Lemmer B (1987) Effects of isoprenaline on the daily rhythm in the cAMP content and AC activity of the rat heart. Chronobiologia 14: 255–256 (abstract)

    Google Scholar 

  • Witte K, Zuther P, Lemmer B (1994) Circadian regulation of angiotensin converting enzyme, adenylyl cyclase, and guanylyl cyclase in aortae from normotensive and spontaneously hypertensive rats. Naunyn Schmiedebergs Arch Pharmacol 349 [Suppl]: R59 (abstract)

    Google Scholar 

  • Witte K, Parsa-Parsi R, Vobig M, Lemmer B (1995) Mechanisms of the circadian regulation of ß-adrenoceptor density and adenylyl cyclase activity in cardiac tissue from normotensive and spontaneously hypertensive rats. J Mol Cell Cardiol 27: 1195–1202

    Article  PubMed  CAS  Google Scholar 

  • Witte K, Schnecko A, Zuther P, Lemmer B (1995) Contribution of the nitric oxideguanylyl cyclase system to circadian regulation of blood pressure in normotensive Wistar-Kyoto rats. Cardiovasc Res 30: 682–688

    PubMed  CAS  Google Scholar 

  • Yamazaki S, Maruyama M, Cagampang FRA, Inouye SIT (1994) Circadian fluctuations of cAMP content in the suprachiasmatic nucleus and the anterior hypothalamus of the rat. Brain Res 651: 329–331

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann T, Nagel M (1987) Untersuchung zur nächtlichen Veränderung von Cortisol, Katecholaminen, c-AMP und Histamin bei Kindern mit nächtlichem Asthma bronchiale und bei gesunden Kindern. Klin Padiatr 199: 103–107

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Witte, K., Lemmer, B. (1997). Rhythms in Second Messenger Mechanisms. In: Redfern, P.H., Lemmer, B. (eds) Physiology and Pharmacology of Biological Rhythms. Handbook of Experimental Pharmacology, vol 125. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09355-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09355-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08265-8

  • Online ISBN: 978-3-662-09355-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics