Chronobiology of Development and Aging

  • E. Haus
  • Y. Touitou
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 125)


The human time structure consists of a spectrum of rhythms of different frequencies which are superimposed on trends such as development and aging. In some variables and some frequencies, the amplitudes of the rhythmic variations may be larger than the change found in the rhythm-adjusted mean value during a lifetime. Many rhythms are genetically determined (endogenous). Some endogenous rhythms, e.g., in the circadian, circaseptan, or circannual frequency range, are adjusted in time (synchronized) by environmental factors, a process which adapts the human organism to our periodic surrounding. The genetic-environmental interactions in the establishment and the maintenance of rhythms begin in early intrauterine life and continue during infancy and childhood with the development of the mature time structure similar to that seen in the adult during the first 12–24 months of extrauterine life. Optimal functioning of the human organism depends upon an appropriate sequence of metabolic events and related variables within the organism (internal synchronization) and a temporal adjustment of these rhythms to the rhythmic events in our environment (external synchronization) (for review see Haus and Touitou 1994a). The availability of the “right” metabolite at the “right” time allows the orderly sequence of metabolic events required for tissue proliferation and/or other functions. Alterations in the human time structure accompany, and in some instances appear to be responsible for, the decline of many vital functions in the elderly with loss of adaptability to the environmental needs and increased risk of developing and succumbing to disease. However, it remains unclear whether the changes in the human time structure observed in the elderly are a cause or a consequence of the aging process. Changes in the time relation of the elderly to environmental synchronizers and failure to adapt to synchronizer changes may lead to clinical symptomatology and impairment of well-being.


Growth Hormone Circadian Rhythm Elderly Subject Biologic Rhythm Ultradian Rhythm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe K, Fukui S (1979) The individual development of circadian temperature rhythm in infants. J Interdise Cycle Res 10: 227–232CrossRefGoogle Scholar
  2. Anderson S, Cornélissen G, Halberg F, Scarpelli PT, Cagnoni S, Germano G, Livi R, Scarpelli L, Cagnoni M, Holte JE (1989) Age effects upon the harmonic structure of human blood pressure in clinical health. Proceedings of the 2nd annual IEEE symposium on computer-based medical systems, Mpls, 26–27 June 1989. Computer Society Press, Washington DC, pp 238–243Google Scholar
  3. Anisimov VN, Bondarenko LA, Khavinson VKM (1992) Effect of pineal peptide preparation (epithalmin) on life span and pineal and serum melatonin level in old rats. Ann N Y Acad Sci 673: 53–57PubMedCrossRefGoogle Scholar
  4. Arendt J (1994) The pineal. In: Touitou Y, Haus E (eds) Biologic rhythms in clinical and laboratory medicine. Springer, Berlin Heidelberg New York, pp 348–362Google Scholar
  5. Aschoff J (1969) Desynchronization and resynchronization of human circadian rhythms. Aerospace Med 40: 844–849PubMedGoogle Scholar
  6. Atkinson G, Witte K, Nold G, Sasse U, Lemmer B (1994) Effects of age on circadian blood pressure and heart rate rhythms in patients with primary hypertension. Chronobiol Int 11: 35–44PubMedCrossRefGoogle Scholar
  7. Bender AD (1970) The influence of age on the activity of catecholamines and related therapeutic agents. J Am Geriatr Soc 18: 220–232PubMedGoogle Scholar
  8. Bertel O, Buhler FR, Kiowski W, Lutold BE (1980) Decreased beta-adrenoreceptor responsiveness as related to age, blood pressure and plasma catecholamines in patients with essential hypertension. Hypertension 2 (2): 130–138PubMedCrossRefGoogle Scholar
  9. Birkenhager-Gillesse G, Derksen J, Lagaay M (1994) Dehydroepiandrosterone sulphate (DHEA-S) in the oldest old, aged 85 and over. Ann NY Acad Sci 719: 543–552PubMedCrossRefGoogle Scholar
  10. Blichert-Toft M (1975) Secretion of corticotrophin and somatotrophin by the senescent adenohypophysis in man. Acta Endocrinol (Copenh) 78: 1–157Google Scholar
  11. Boddy K, Dawes GS (1974) Fetal breathing. J Physiol (Lond) 243: 599–603Google Scholar
  12. Brock MA (1983) Seasonal rhythmicity in lymphocyte blastogenic responses of mice persists in a constant environment. J Immunol 130: 2586–2588PubMedGoogle Scholar
  13. Brock MA (1987a) Age-related changes in circannual rhythms of lymphocyte blastogenic responses in mice. Am J Physiol 252: R299–305PubMedGoogle Scholar
  14. Brock MA (1987b) Temporal order vs. variability in activation of lymphocytes from aging mice. Mech Ageing Dev 37: 197–210CrossRefGoogle Scholar
  15. Brock MA (1991) Chronobiology and aging. J Am Geriatr Soc 39: 74–91PubMedGoogle Scholar
  16. Bruguerolle B, Arnaud C, Bouvenot G (1989) Variations circadienne de l’alpha 1 glycoproteine acid (orosomucoide): consequences therapeutiques? Etude preliminaire. Sem Hos Paris 60: 2916–2917Google Scholar
  17. Cahn HA, Folk GE Jr, Huston PE (1968) Age comparison of human day-night physiological differences. Aerospace Med 39: 608–610PubMedGoogle Scholar
  18. Campbell K (1980) Ultradian rhythms in the human fetus during the last ten weeks of gestation: a review. Semin Perinatol 4: 301–309PubMedGoogle Scholar
  19. Campbell SS, Gillin JC, Kripke DF, Erikson P, Clopton P (1989) Gender differences in the circadian temperature of healthy elderly subjects: relationships to sleep quality. Sleep 12: 529–536PubMedGoogle Scholar
  20. Carani C, Baldini A, Morabito F, Resentini M, Diazzi G, Sarti G, Del Rio G, Zini D (1987) Further studies on the circadian rhythms of serum melatonin and testosterone in elderly men. In: Trentini GP, DeGaetani C, Pévet P (eds) Fundamentals and clinics in pineal research. Raven, New York, p 377Google Scholar
  21. Casale G, Migliavacca A, Bonora C, Zurita IE, de Nicola P (1981) Circadian rhythm of plasma iron, total iron binding capacity and serum ferritin in arteriosclerotic aged patients. Age Ageing 10: 115–118PubMedCrossRefGoogle Scholar
  22. Casale G, Emiliani S, de Nicola P (1982) Circadian rhythm of circulating blood cells in elderly persons. Hematologica 67: 837–844Google Scholar
  23. Casale G, Marinoni GL, d’Angelo R, de Nicola P (1983) Circadian rhythm of immunoglobulins in aged persons. Age Aging 12: 81–85CrossRefGoogle Scholar
  24. Chamberlain PF, Manning FA, Morrison I, Lange IR (1984) Circadian rhythm in bladder volumes in the term human fetus. Obstet Gynecol 64: 657–660PubMedGoogle Scholar
  25. Clayton DL, Mullen AW, Barnett CC (1975) Circadian modification of drug-induced teratogenesis in rat fetuses. Chronobiologia 2: 210–217PubMedGoogle Scholar
  26. Conway J, Wheeler R, Sannerstedt R (1971) Sympathetic nervous activity exercise in relation to age. Cardiovasc Res 5: 577–581PubMedCrossRefGoogle Scholar
  27. Cornélissen G, Halberg F, Tarquini B, Mainardi G, Panero C, Cariddi A, Sorice V, Cagnoni M (1987) Blood pressure rhythmometry during the first week of human life. In: Tarquini B, Vergassola R (eds) Social diseases and chronobiology: proceedings of the IIIrd international symposium on social diseases and chronobiology. Florence, 29 Nov 1986. Esculapio, Bologna, pp 113–122Google Scholar
  28. Cornélissen G, Sitka U, Tarquini B, Mainardi G, Panero C, Cugini P, Weinert D, Romoli F, Cassanas G, Maggioni C, Vernier R, Work B, Einzig S, Rigatuso J, Schuh J, Kato J, Tamura K, Halberg F (1990) Chronobiologic approach to blood pressure during pregnancy and early extrauterine life. In: Hayes DK, Pauly JE, Reiter RJ (eds) Chronobiology: its role in clinical medicine, general biology, and agriculture, part A. Wiley-Liss, New York, pp 585–594Google Scholar
  29. Cornélissen G, Haus E, Halberg F (1994) Chronobiologic blood pressure assessment from womb to tomb. In: Touitou Y, Haus E (eds) Biologic rhythms in clinical and laboratory medicine. Springer, Berlin Heidelberg New York, pp 428–452Google Scholar
  30. Cugini P (1984) Chronobiology and senescence. In: Halberg F, Reale L, Tarquini B (eds) Proceedings of the Ilnd international symposium on chronobiologie approach to social medicine. Istituto Italiano di Medicina Sociale, RomepP 229–268Google Scholar
  31. Cugini P, Halberg F (1980) Age-associated rhythm changes in hormonal levels. All-University Council of Aging: News Walter Library, University of Minnesota, 6: 3Google Scholar
  32. Cugini P, Scavo D, Halberg F, Schramm A, Pusch HJ, Franke H (1980) Age and sex difference in circadian amplitude of serum aldosterone. In: Proceedings of the XXVIIIth international congress on physiological sciences. 13–19 July 1980. Budapest, p 1140Google Scholar
  33. Cugini P, Scavo D, Halberg F, Sothern RB, Meucci T, Salandi E, Massimiani F (1981) Aging and circadian rhythm of plasma renin and aldosterone. Maturitas 3: 173PubMedCrossRefGoogle Scholar
  34. Cugini P, Scavo D, Halberg F, Schramm A, Pusch HJ, Franke H (1982) Methodologically critical interaction of circadian rhythms: sex and aging characterize serum aldosterone of the female adrenopause. J Gerontol 37: 403–411PubMedCrossRefGoogle Scholar
  35. Cugini P, Lucia P, Murano G, Scavo D (1983a) Invecchiamento e standards cronobiologici di normalita per i livelli sierici di alcuni ormoni. Rendiconti Soc It Med Int, Roma, pp 183–186Google Scholar
  36. Cugini P, Scavo D, Centanni, Halberg F, Haus E, Lakatua D, Schramm A, Pusch HJ, Franke H, Kawasaki T (1983b) Circadian as well as circannual rhythms of circulating aldosterone have decreased amplitude in aging women. J Endocrinol Invest 6: 17–22PubMedGoogle Scholar
  37. Cutler NR, Hodes JE (1983) Assessing the noradrenergic system in normal aging: a review of methodology. Exp Aging Res 9 (3): 123–127PubMedCrossRefGoogle Scholar
  38. D’Agata R, Vigneri R, Polosa P (1974) Chronobiological study on growth hormone secretion in man: its relation to sleep-wake cycles and to increasing age. In: Scheving LE, Halberg F, Pauly JE (eds) Chronobiology. Igaku Shoin, Tokyo, p 81Google Scholar
  39. Dalton KJ, Denman DW, Dawson AJ, Hoffman HJ (1986) Ultradian rhythms in human fetal heart rate: a computerized time series analysis. Int J Biomed Comput 18: 45–60PubMedCrossRefGoogle Scholar
  40. Davis FC, Menaker M (1981) Development of the mouse circadian pacemaker: independence from environmental cycles. J Comp Physiol 143: 527CrossRefGoogle Scholar
  41. Dement WC, Miles LE, Carskadon MA (1982) “White paper” on sleep and aging. J Am Geriatr Soc 30:25–50Google Scholar
  42. DeSchaepdryver AF, Hooft C, Delbeke MJ, den Noortgaete MV (1978) Urinary catecholamines and metabolites in children. J Pediatr 93 (2): 266–268CrossRefGoogle Scholar
  43. Descovich GC, Montalbetti N, Kuhl JFW, Rimondi S, Halberg F, Ceredi C (1974) Age and catecholamine rhythms. Chronobiologia 1: 163–171PubMedGoogle Scholar
  44. DeVries JIP, Visser GHA, Prechtl HFR (1985) The emergence of fetal behavior. II. Quantitative aspects. Early Hum Dev 12: 99–120Google Scholar
  45. Doncaster HD, Barton RN, Horan MA, Roberts NA (1993) Factors influencing cortisol-adrenocorticotrophin relationships in elderly women with upper femur fractures. J Trauma 34: 49–55PubMedCrossRefGoogle Scholar
  46. Dybkaer R, Lauritzen M, Krakauer R (1981) Relative reference values for clinical, chemical and hematological quantities in “healthy” elderly people. Acta Med Scand 209: 1–9PubMedCrossRefGoogle Scholar
  47. Ebadi M, Samejima M, Pfeiffer RF (1993) Pineal gland in synchronizing and refining physiological events. News Physiol Sci 8: 30Google Scholar
  48. Engel R, Sothern RB, Halberg F (1985) Circadian and infradian aspects of blood pressure in a treated elderly mesorhypertensive physician (abstract). Chronobiologia 12: 243Google Scholar
  49. Esler M, Skews H, Leonard P, Jackman G, Bobik A, Korner P (1981) Age difference of noradrenaline kinetics in normal subjects. Clin Sci 60 (2): 217–219PubMedGoogle Scholar
  50. Ferrari E, Magri F, Dori D, Migliorati G, Nescis T, Molla G, Fioraranti M, Solerte SB (1995) Neuroendocrine correlates of the aging brain in humans. Neuroendocrinology 61: 464–470PubMedCrossRefGoogle Scholar
  51. Finkelstein J, Roffwarg H, Boyar R, Kream J, Hellman L (1972) Age-related changes in the twenty-four hour spontaneous secretion of growth hormone. J Clin Endocrinol Metab 35: 665–670PubMedCrossRefGoogle Scholar
  52. Florini JR, Prinz PN, Vitiello MV, Hintz RL (1985) Somatomedin C levels in healthy young and old men: relationship to peak and 24-hour integrated levels of growth hormone. J Gerontol 40: 2–7PubMedCrossRefGoogle Scholar
  53. Frayn KN, Stoner HB, Barton RN, Heath DF, Galasko CS (1983) Persistence of high plasma glucose, insulin and cortisol concentrations in elderly patients with proximal femoral fractures. Age Aging 12: 70–76CrossRefGoogle Scholar
  54. Gavras H, Hatzinikolau P, North WG, Bresnahan M, Garvas I (1982) Interaction of the sympathetic nervous system with vasopressin and renin in the maintenance of blood pressure. Hypertension 4: 400–405PubMedCrossRefGoogle Scholar
  55. Giusti M, Lomeo A, Marini G, Attanasio R, Baneca A, Camogliano L, Peluffo F, Giordano G (1987) Role of aging on growth hormone and prolactin release after growth hormone releasing hormone and domperidone in man. Horm Res 27: 134–140PubMedCrossRefGoogle Scholar
  56. Goldenberg F (1991) Le sommeil du sujet âgé normal. Neurophysiol Clin 21: 267–279PubMedCrossRefGoogle Scholar
  57. Goldstein DS, Lake CR, Chernow B, Ziegler GM, Coleman MD, Taylor AA, Mitchell JR, Kopin IJ, Keiser HR (1983) Age-dependence of hypertension-normotensive differences in plasma norepinephrine. Hypertension 5: 100–104PubMedCrossRefGoogle Scholar
  58. Gordon GB, Shantz LM, Talalay P (1987) Modulation of growth, differentiation, and carcinogenesis by dehydroepiandrosterone. Adv Enzyme Regul 26: 355–382PubMedCrossRefGoogle Scholar
  59. Gordon GB, Helz L, Sover KJ, Comstock GW (1991) Serum levels of DHEA and its sulfate, and the risk of developing bladder cancer. Cancer Res 51: 1366–1369PubMedGoogle Scholar
  60. Gordon GB, Helz L, Sover KJ, Alberg AJ, Comstock GW (1993) Serum levels of dehydroepiandrosterone and dehydroepiandrosterone sulfate and the risk of developing gastric cancer. Cancer Epidemiol Biomarkers Prey 2: 33–35Google Scholar
  61. Greenberg LH, Weiss B (1978) B-Adrenergic receptors in aged rat brain: reduced number and capacity of pineal to develop supersensitivity. Science 201: 61–63PubMedCrossRefGoogle Scholar
  62. Gupta D, Riedel L, Frick Hi, Attanasio A, Ranke MB (1983) Circulating melatonin in children: in relation to puberty, endocrine disorders, functional tests, and racial origin. Neuroendocrinol Lett 5: 63–78Google Scholar
  63. Halberg F, Panofsky H (1961) I. Thermo-variance spectra; method and clinical illustrations. Exp Med Surg 19: 284–309Google Scholar
  64. Halberg F, Ulstrom RA (1952) Morning changes in number of circulating eosinophils in infants. Acta Paediatr 50: 160–170Google Scholar
  65. Halberg F, Schramm A, Pusch HI, Franke H, Cugini P, Scavo D (1980) More prominent circadian amplitude (than any MESOR)-decrease characterizes serum prolactin in human aging. Chronobiologia 7: 132–133Google Scholar
  66. Halberg F, Cornelissen G, Sothern RB, Wallach LA, Halberg E, Ahlgren A, Kuzel M, Radke A, Barbosa J, Goetz F, Buckley J, Mandel J, Schuman L, Haus E, Lakatua D, Sackett L, Berg H, Wendt HW, Kawasaki T, Ueno M, Uezono K, Matsuoka M, Omae T, Tarquini B, Cagnoni M, Garcia Sainz M, Perez Vega E, Wilson D, Griffiths K, Donati L, Tatti P, Vasta M, Locatelli J, Camagna A, Lauro R, Tritsch G, Wetterberg L (1981) International geographic studies of oncological interest on chronobiological variables. In: Kaiser HN (ed) Neoplasma — comparative pathology of growth in animals, plants, and man. Wiley, New York, pp 553–596Google Scholar
  67. Halberg F, Cornelissen G, Bakken E (1990) Caregiving merged with chronobiologie outcome assessment, research and education in health maintenance organizations (HMOs). In: Hayes DK, Pauly JE, Reiter RJ (eds) Chronobiology: its role in clinical medicine, general biology, and agriculture, part B. Wiley-Liss, New York, pp 491–549Google Scholar
  68. Halberg F, Halberg E, Halberg J, Ikonomov O, Otsuka K, Holte J, Tamura K, Saito Y, Hata Y, Uezono K, Wang ZR, Xue ZN, del Pozo F, Hillman DC, Samayoa W, Bakken E, Cornelissen G (1991) Womb to tomb blood pressure (BP) monitoring: are single or even 24-hour measurements enough? Proc Assn Adv Med Instr, Washington DC, p 38Google Scholar
  69. Halliwell B (1992) Reactive oxygen species and the central nervous system. J Neurochem 59: 1609–1623PubMedCrossRefGoogle Scholar
  70. Happenbrowers T, Ugartechca JC, Combs D, Hodgman JE, Harpe RM, Sterman MB (1978) Studies of maternal-fetal interaction during the last trimester of pregnancy: ontogenesis of the basic rest-activity cycle. Exp Neurol 61: 136–153CrossRefGoogle Scholar
  71. Harmon D (1992) Free radical theory of aging. Mutat Res 275: 257–266CrossRefGoogle Scholar
  72. Hartman ML, Veldhuis JD, Thorner MO (1993) Normal control of growth hormone secretion. Horm Res 40: 37–47PubMedCrossRefGoogle Scholar
  73. Haus E, Touitou Y (1994a) Chronobiology in laboratory medicine. In: Touitou Y, Haus E (eds) Biologic rhythms in clinical and laboratory medicine. Springer, Berlin Heidelberg New York, pp 673–708Google Scholar
  74. Haus E, Touitou Y (1994b) Principles of clinical chronobiology. In: Touitou Y, Haus E (eds) Biologic rhythms in clinical and laboratory medicine. Springer, Berlin Heidelberg New York, pp 6–34Google Scholar
  75. Haus E, Lakatua DJ, Halberg F, Halberg E, Cornelissen G, Sackett LL, Berg HG, Kawasaki T, Ueno M, Uezono K, Matsouka M, Omae T (1980) Chronobiological studies of plasma prolactin in women in Kyushu, Japan and Minnesota, USA. J Clin Endocrinol Metab 51: 632–640Google Scholar
  76. Haus E, Lakatua DJ, Swoyer J, Sackett-Lundeen L (1983) Chronobiology in hematology and immunology. Am J Anat 168: 467–517PubMedCrossRefGoogle Scholar
  77. Haus E, Lakatua DJ, Sackett-Lundeen L, Swoyer J (1984) Chronobiology in laboratory medicine. In: Reitveld WT (ed) Clinical aspects of chronobiology. Bakker, Baarn, pp 13–82Google Scholar
  78. Haus E, Nicolau GY, Lakatua DJ, Bogdan C, Popescu M, Sackett-Lundeen L, Fraboni A, Petrescu E (1988a) Circadian rhythm parameters of clinical and endocrine functions in elderly subjects under treatment with various commonly used drugs. In: Reinberg A, Smolensky M, Labrecque G (eds) Annual review of chronopharmacology. Pergamon, New York, pp 77–80Google Scholar
  79. Haus E, Nicolau G, Lakatua DJ, Sackett-Lundeen L (1988b) Reference values for chronopharmacology. Annu Rev Chronopharm 4: 333–424Google Scholar
  80. Haus E, Nicolau G, Lakatua DJ, Sackett-Lundeen L, Petrescu E (1989) Circadian rhythm parameters of endocrine functions in elderly subjects during the seventh to the ninth decade of life. Chronobiologia 16 (4): 331–352PubMedGoogle Scholar
  81. Haus E, Dumitriu L, Nicolau GY, Lakatua, D, Berg H, Petrescu L, Sackett-Lundeen L, Reilly R (1995a) Time relation of circadian rhythms in plasma dehydroepiandrosterone and dehydroepiandrosterone-sulfate to ACTH, cortisol, and 11-desoxycortisol. World Conference on Chronobiology and Chronotherapeutics, Italy, Sept 1995 (abstract)Google Scholar
  82. Haus E, Nicolau GY, Ghinea E, Dumitriu L, Petrescu E, Sackett-Lundeen L (1996a) Stimulation of the secretion of dehydroepiandrosterone by melatonin in mouse adrenals in vitro. Life Sciences 58: 263–267CrossRefGoogle Scholar
  83. Haus E, Sackett-Lundeen L, Lakatua DJ, Lundeen W, Halberg F, Cornelissen G, Uezono K, Omae T, Kawasaki T (1996b) Circadian rhythm in pulsatile secretion characteristics of plasma cortisol and prolactin in American and Japanese women (in press)Google Scholar
  84. Hayes B, Czeisler CA (1994) Chronobiology of human sleep and sleep disorders. In: Touitou Y, Haus E (eds) Biologic rhythms in clinical and laboratory medicine. Springer, Berlin Heidelberg New York, pp 256–264Google Scholar
  85. Hellbrügge T (1960) The development of circadian rhythms in infants. Cold Spring Harb Symp Quant Biol 25: 311–323CrossRefGoogle Scholar
  86. Hellbrügge T (1974) The development of circadian and ultradian rhythms of premature and full term infants. In: Scheving LE, Halberg F, Pauly JE (eds) Chronobiology. Igaku Shoin, Tokyo, p 339–341Google Scholar
  87. Hequet B, Meynadier J, Bonneterre J, Adenis L (1984) Circadian rhythm in cisplatin binding of plasma proteins. Annu Rev Chronopharm 1: 115–118Google Scholar
  88. Hildebrandt G, Emde L, Geyer F, Weimann H (1980) Zur Frage der periodischen Gliederung adaptives Prozesse. Z Phys Med 9: 90–92Google Scholar
  89. Ho KK, Hoffman DM (1993) Aging and growth hormone. Horm Res 40: 80–86PubMedCrossRefGoogle Scholar
  90. Horan MA (1994) Aging, injury and the hypothalamic-pituitary-adrenal axis. Ann N Y Acad Sci 719: 285–290PubMedCrossRefGoogle Scholar
  91. Huether G (1994) Melatonin synthesis in the gastrointestinal tract and the impact of nutritional factors on circulating melatonin. Ann N Y Acad Sci 719: 146–158PubMedCrossRefGoogle Scholar
  92. Humbert W, Pevet P (1993) The decrease of pineal melatonin production with age. Causes and consequences. Ann N Y Acad Sci 719: 43–63Google Scholar
  93. Iguchi H, Kato KI, Ibayashi H (1982) Age dependent reduction in serum melatonin concentrations in healthy human subjects. J Clin Endocrinol Metab 55: 27–29CrossRefGoogle Scholar
  94. Isaacson RJ (1959) Investigation of some of the factors involved in the closure of the secondary palate. Thesis, University of Minnesota, MinneapolisGoogle Scholar
  95. Jundell I (1904) Uber die nykthemeralen Temperatur-Schwankungen im ersten Lebensjahre des Menschen. Jahrb Kinderheilkd 59: 521–619Google Scholar
  96. Kanabrocki EL, Sothern RB, Scheving LE, Vesley DL, Tsai TH, Shelstad J, Cournoyer C, Greco J, Mermall H, Ferlin H, Nemchausky BM, Bushnell D, Kaplan E, Kahn S, Augustine G, Holmes E, Rumbyrt J, Sturtevant RP, Sturtevant F, Bremner F, Third JLHC, McCormick JB, Dawson S, Sackett-Lundeen L, Haus E, Halberg F, Pauly JE, Olwin JH (1990) Reference values for circadian rhythms of 98 variables in clinically healthy men in the fifth decade of life. Chronobiol Int 7: 445–461PubMedCrossRefGoogle Scholar
  97. Karki NT (1956) The urinary excretion of noradrenaline and adrenaline in different age groups; its diurnal variation and effect of muscular work on it. Acta Physiol Scand 39 [Suppl 132]: 1–96Google Scholar
  98. Kirkland JL, Lye M, Levy DW, Banerjee AK (1983) Pattern of urine flow and electrolyte excretion in healthy elderly people. Br Med J 287: 1665–1667CrossRefGoogle Scholar
  99. Kleitman N (1963) Sleep and wakefulness. University of Chicago, ChicagoGoogle Scholar
  100. Kleitman N, Engelman TG (1953) Sleep characteristics of infants. J Appl Physiol 6: 269–282PubMedGoogle Scholar
  101. Lakatta VG, Gerstenblith G, Angell CS, Shock MW, Weisfeldt ML (1975) Diminished inotropic response of aged myocardium to catecholamines. Circ Res 36 (2): 262–269PubMedCrossRefGoogle Scholar
  102. Lakatua DJ, Nicolau GY, Bogdan C, Petrescu E, Sackett-Lundeen L, Irvine PW, Haus E (1984) Circadian endocrine time structure in humans above 80 years of age. J Gerontol 39: 654–684CrossRefGoogle Scholar
  103. Lakatua DJ, Nicolau GY, Sackett-Lundeen L, Petrescu E, Ortmeier T, Haus E (1992) Circadian rhythm in adrenal response to endogenous ACTH in clinically healthy subjects of different ages. Proceedings of the 5th international conference on chronopharmacology, Amelia Island, FL, USA, abstracts, p IX - 1Google Scholar
  104. Lemmer B (1989) Circadian rhythms in the cardiovascular system. In: Arendt J, Minors D, Waterhouse J (eds) Biologic rhythms in clinical practice. Wright, London, pp 51–70Google Scholar
  105. Levi F, Halberg F (1982) Circaseptan (about 7-day) bioperiodicity — spontaneous and reactive and the search for pacemakers. Ric Clin Lab 12: 323–370PubMedGoogle Scholar
  106. Lieberman HR, Wurtman JJ, Teicher MH (1989) Circadian rhythms of activity in healthy young and elderly humans. Neurobiol Aging 10: 259–265PubMedCrossRefGoogle Scholar
  107. Lobban M, Tredre B (1964) Diurnal rhythms of renal excretion and of body temperature in aged subjects. J Physiol (Lond) 170: 29Google Scholar
  108. Loria RM, Padgett DA (1992) Androstenediol regulates systemic resistance against lethal infections in mice. Arch Virol 127: 103–115PubMedCrossRefGoogle Scholar
  109. Lungu A, Nicolau GY (1973) Circannual rhythm of thyroid function in rat. Rev Roum Endocrinol 10: 365–372Google Scholar
  110. Lungu A, Nicolau GY, Cocu F, Teodoru V, Dinu I (1966) Protein-bound iodine variations and spontaneous atmospheric temperature oscillations. Rev Roum Endocrinol 3: 279–282Google Scholar
  111. Markey SP, Higa S, Shih S, Danforth DN, Tamarkin L (1985) The correlation between plasma melatonin levels and urinary 6-hydroxymelatonin excretion. Clin Chim Acta 150: 221–225PubMedCrossRefGoogle Scholar
  112. Martin du Pan R (1974) Some clinical applications of our knowledge of the evolution of the circadian rhythm in infants. In: Scheving LE, Halberg F, Pauly JE (eds) Chronobiology. Igaku Shoin, Tokyo, pp 138–144Google Scholar
  113. Martinez JL Jr, Vasquez BJ, Messing RB, Jensen RA, Liang KC, McGaugh JL (1981) Age-related changes in the catecholamines content of peripheral organs in male and female F344 rats. J Gerontol 36: 280–284PubMedCrossRefGoogle Scholar
  114. Master AM, Jaffe HL (1952) Factors in the onset of coronary occlusion and coronary insufficiency. JAMA 148: 794–798CrossRefGoogle Scholar
  115. Meis PJ (1994) Chronobiology of pregnancy and the perinatal time span. In: Touitou Y, Haus E (eds) Biologic rhythms in clinical and laboratory medicine. Springer, Berlin Heidelberg New York, pp 158–166Google Scholar
  116. Menna-Barreto L, Benedito-Silva AA, Marques N, Morato de Andrade MM, Louzada F (1993) Ultradian components of the sleep-wake cycle in babies. Chronobiol Int 10: 103–108PubMedCrossRefGoogle Scholar
  117. Milcu AE, Bogdan C, Nicolau GY, Cristea A (1978) Cortisol circadian rhythm in 70100 year old subjects. Rev Roum Med Endocrinol 16: 29–39Google Scholar
  118. Mitler M, Sokolove P, Lund R (1975) Activity-inactivity and wakefulness-sleep in mice: induced changes in cyclic relationships by prolonged exposure to constant conditions. Sleep Res 4: 267Google Scholar
  119. Moline ML, Pollak CP, Monk TH, Lester LS, Wagner DR, Zendell SM, Graeber RC, Salter CA, Hirsch E (1992) Age related differences in recovery from simulated jet lag. Sleep 14: 42–48Google Scholar
  120. Monk TH, Buysse DJ, Reynolds CF III, Kupfer DJ (1993) Inducing jet lag in older people: adjusting to a 6-hour phase advance in routine. Exp Gerontol 28: 119–133PubMedCrossRefGoogle Scholar
  121. Moore-Ede MC, Sulzman FM (1981) Internal temporal order. In: Aschoff J (ed) Biologic rhythms Plenum, New York, p 215 (Handbook of behavioral neurobiology, vol 4 )Google Scholar
  122. Muller JE, Stone PH, Turi SG, Rutherford JD, Czeisler CA, Parker C, Poole WK, Passamani E, Roberts R, Robertson T, Sobel BE, Willerson JT, Braunwald E, MILIS Study Group (1985) Circadian variation in the frequency of onset of acute myocardial infarction. N Engl J Med 313: 1315–1322PubMedCrossRefGoogle Scholar
  123. Muller JE, Ludmer PL, Willich SN, Tofler JH, Aylmer G, Klangos I, Stone PI (1987) Circadian variation in the frequency of sudden cardiac death. Circulation 75: 131–138PubMedCrossRefGoogle Scholar
  124. Munakata M, Imai Y, Abe K, Sasaki S, Minami N, Hashimoto J, Sakuma H, Ichijo T, Sekina M, Yoshizawa M, Sekina H (1991) Assessment of age-dependent changes in circadian blood pressure rhythm in patients with essential hypertension. J Hypertens 9: 407–415PubMedCrossRefGoogle Scholar
  125. Munan L, Kelly A (1979) Age dependent changes in blood monocyte populations in man. Clin Exp Immunol 35: 161–162PubMedGoogle Scholar
  126. Murri L, Barreca T, Cerone G, Massetani R, Galamini A, Baldassarre M (1980) The 24 h pattern of human prolactin and growth hormone in healthy elderly subjects. Chronobiologia 7: 87–92PubMedGoogle Scholar
  127. Nakai T, Yamada R (1983) Urinary catecholamine excretion by various age groups with special reference to clinical value of measuring catecholamines in newborns. Pediatr Res 17: 456–460PubMedCrossRefGoogle Scholar
  128. Nakazawa Y, Nonaka K, Nishida N, Hayashida N, Miyahara Y, Kotorii T, Matsuoka K (1991) Comparison of body temperature rhythms between healthy elderly and healthy young adults. Jpn J Psychiatry 45: 37–43Google Scholar
  129. Nasello-Paterson C, Natale R, Connors G (1988) Ultrasonic evaluation of fetal body movements over twenty-four hours in the human fetus at twenty-four to twenty-eight weeks’ gestation. Am J Obstet Gynecol 158: 312–316PubMedGoogle Scholar
  130. Nelson W, Bingham C, Haus E, Lakatua DJ, Kawasaki T, Halberg F (1980) Rhythm-adjusted age effects in a concomitant study of twelve hormones in blood plasma of women. J Gerontol 35 (4): 512–519PubMedCrossRefGoogle Scholar
  131. Nicolau GY, Haus E (1989) Chronobiology of the endocrine system. Rev Roum Med Endocrinol 27 (3): 153–183Google Scholar
  132. Nicolau GY, Haus E (1994) Chronobiology of the hypothalamic-pituitary-thyroid axis. In: Touitou Y, Haus E (eds) Biologic rhythms in clinical and laboratory medicine. Springer, Berlin Heidelberg New York, pp 330–347Google Scholar
  133. Nicolau GY, Lakatua D, Sackett-Lundeen L, Haus E (1984) Circadian and circannual rhythms of hormonal variables in elderly men and women. Chronobiol Int 1 (4): 301–319PubMedCrossRefGoogle Scholar
  134. Nicolau GY, Haus E, Lakatua DJ, Bogdan C, Sackett-Lundeen L, Popescu M, Berg H, Petrescu E, Robu E (1985a) Circadian and circannual variations of FSH, LH, testosterone, dehydroepiandrosterone-sulfate (DHEA-S) and 17-hydroxy progesterone (17 OH-prog) in elderly men and women. Rev Roum Med Endocrinol 23: 223–246Google Scholar
  135. Nicolau GY, Haus E, Lakatua D, Plinga L, Sackett-Lundeen L, Berg H, Petrescu E (1985b) Circadian rhythm in plasma immunoreactive somatomedin-C in children. Rev Roum Med Endocrinol 23: 97–103Google Scholar
  136. Nicolau GY, Haus E, Lakatua D, Sackett-Lundeen L, Bogdan C, Plinga L, Petrescu E, Ungureanu E, Robu E (1985c) Differences in the circadian rhythm parameters of urinary free epinephrine, norepinephrine, and dopamine between children and elderly subjects. Rev Roum Med Endocrinol 23: 189–199Google Scholar
  137. Nicolau GY, Haus E, Bogdan C, Plinga L, Robu E, Ungureanu E, Sackett-Lundeen L, Petrescu E (1986) Circannual rhythms of systolic and diastolic blood pressure in elderly subjects and in children. Rev Roum Med Endocrinol 24: 97–107Google Scholar
  138. Nicolau GY, Dumitriu L, Plinga L, Petrescu E, Sackett-Lundeen L, Lakatua DJ, Haus E (1987a) Circadian and circannual variations of thyroid function in children 11 f 1.5 years of age with and without endemic goiter. In: Pauly JE, Scheving LE (eds) Progress in clinical and biological research. Liss, New York, pp 229–247 (Advances in chronobiology, vol 227B )Google Scholar
  139. Nicolau GY, Haus E, Lakatua DJ, Bogdan C, Plinga L, Irvine P, Popescu M, Petrescu E, Sackett-Lundeen L, Swoyer J, Robu E (1987b) Chronobiology of serum iron concentrations in subjects of different ages at different geographic locations. Rev Roum Med Endocrinol 25: 63–82Google Scholar
  140. Nicolau GY, Haus E, Popescu M, Sackett-Lundeen L, Petrescu E (1991) Circadian, weekly, and seasonal variations in cardiac mortality, blood pressure, and catecholamine excretion. Chronobiol Int 8: 149–159PubMedCrossRefGoogle Scholar
  141. Nielsen H, Blom J, Larsen SO (1984) Human blood monocyte function in relation to age. Acta Pathol Microbiol Immunol Scand [C] 92: 5–10Google Scholar
  142. Nowak JZ, Zurawska E, Zawilska J (1989) Melatonin and its generating system in vertebrate retina: circadian rhythm, effect of environmental lighting and interaction with dopamine. Neurochem Int 14: 397–406PubMedCrossRefGoogle Scholar
  143. Oddie TH, Klein AH, Foley TP, Fisher DA (1979) Variation in values for iodothyronine hormones, thyrotropin and thyroxin binding globulin in normal umbilical cord serum with season and duration of storage. Clin Chem 25: 1251–1253PubMedGoogle Scholar
  144. Ogata K, Sasaki T, Murakami N (1966) Central nervous and metabolic aspects of body temperature regulation. Bull Inst Const Med Kumamoto Univ [Suppl] 16: 1–67Google Scholar
  145. Otsuka K, Kitazumi T, Matsubayashi K, Kawamoto A, Sadakane N, Chikamori T, Kuzume O, Shimada K, Ogura H, Ozawa T (1989) Age-related alterations in the circadian pattern of blood pressure. Am J Noninvas Cardiol 3: 159–165Google Scholar
  146. Panofsky H, Halberg F (1961) II. Thermo-variance specta; simplified computational example and other methology. Exp Med Surg 19: 323–338Google Scholar
  147. Parra A, Ramirez del Angel A, Cervantes C, Sanchez M (1980) Urinary excretion of catecholamines in healthy subjects in relation to body growth. Acta Endocrinol (Copenh) 94: 546–551Google Scholar
  148. Patel IH, Venkataramanan R, Levy RH, Visranathan CT, Ojemann LM (1982) Diurnal oscillations in plasma protein binding of valporic acid. Epilepsia 23 (3): 283–290PubMedCrossRefGoogle Scholar
  149. Patrick J, Challis J (1980) Measurement of human fetal breathing movements in healthy pregnancies using a realtime scanner. Semin Perinatol 4: 275–286PubMedGoogle Scholar
  150. Patrick J, Fetherston W, Vick H, Voegelin R (1978) Human fetal breathing movements and gross fetal body movements at weeks 34 to 35 of gestation. Am J Obstet Gynecol 130: 693–699PubMedGoogle Scholar
  151. Patrick J, Cambell K, Carmichael L, Probert C (1982) Influence of maternal heart rate and gross fetal body movements on the daily pattern of fetal heart rate near term. Am J Obstet Gynecol 144: 533–538PubMedGoogle Scholar
  152. Peng MT, Jiang MJ, Hsü HK (1980) Changes in running-wheel activity, eating and drinking and their day-night distributions throughout the life span of the rat. J Gerontol 35: 339–347PubMedCrossRefGoogle Scholar
  153. Pierpaoli W, Regelson W (1994) Pineal control of aging: effect of melatonin and pineal grafting on mice. Proc Natl Acad Sci USA 91: 787–791PubMedCrossRefGoogle Scholar
  154. Pierpaoli W, Dall’ara A, Pedrino E, Regelson W (1991) The pineal control of aging. The effects of melatonin and pineal grafting on the survival of older mice. Ann N Y Acad Sci 621: 291–313Google Scholar
  155. Pittendrigh C, Daan S (1974) Circadian oscillations in rodents: a systematic increase of their frequency with age. Science 186: 548PubMedCrossRefGoogle Scholar
  156. Preston F (1973) Further sleep problems in airline pilots on world-wide schedules. Aerosp Med 44: 775–782PubMedGoogle Scholar
  157. Refinetti R, Menaker M (1992) The circadian rhythm in body temperature. Physiol Behav 51: 613–637PubMedCrossRefGoogle Scholar
  158. Regelson W, Loria R, Kalimi M (1988) Hormonal intervention: “buffer hormones” or “state dependency”. The role of dehydroepiandrosterone ( DHEA), thyroid hormone, estrogen and hypophysectomy in aging. Ann NY Acad Sci 521: 260–273Google Scholar
  159. Regelson W, Kalimi M, Loria R (1990) DHEA: some thoughts as to its biologic and clinical action. In: Kalimi M, Regelson W (eds) The biologic role of dehydroepiandrosterone (DHEA). De Gruyter, New York, pp 405–445Google Scholar
  160. Regelson W, Loria R, Kalimi M (1994) Dehydroepiandrosterone (DHEA) — the “mother steroid”. I. Immunologic action. Ann N Y Acad Sci 719: 553–563Google Scholar
  161. Reinberg A, Gervais P, Halberg F, Gaultier M, Poynette N, Abulker C, Dupont J (1973) Mortalité des adultes: rythmes circadiens et circannuels. Nouv Presse Med 2: 289–294PubMedGoogle Scholar
  162. Reinberg A, Lagoguey M, Cesselin F, Touitou Y, Legrand JC, Delassalle A, Antreassian J, Lagoguey A (1978) Circadian and circannual rhythms in plasma hormones and other variables of five healthy young human males. Acta Endocrinol (Copenh) 88: 417–427Google Scholar
  163. Reiter RJ, Poeggeler B, Tan DX, Chen LD, Manchester LC, Guerrero JM (1993) Antioxidant capacity of melatonin: a novel action not requiring a receptor. Neuroendocrinol Lett 15: 103–116Google Scholar
  164. Reiter RJ, Tan D, Poeggeler B, Menendez-Pelaez A, Chen L, Saarela S (1994) Melatonin as a free radical scavenger: implications for aging and age-related diseases. Ann N Y Acad Sci 719: 1–12PubMedCrossRefGoogle Scholar
  165. Reuss S, Spies C, Schroder H, Vollrath L (1990) The aged pineal gland: reduction in pinealocyte number and adrenergic innervation in male rats. Exp Gerontol 25: 183–188PubMedCrossRefGoogle Scholar
  166. Richardson B, Natale R, Patrick J (1979) Human fetal breathing activity during effectively induced labor at term. Am J Obstet Gynecol 133: 247–255PubMedGoogle Scholar
  167. Richardson GS (1990) Circadian rhythms and aging. In: Schneider EL, Rowe JW (eds) Handbook of the the biology of aging, 3rd edn. Academic, San Diego, p 275CrossRefGoogle Scholar
  168. Roberts NA, Barton RN, Horan MA, White A (1990) Adrenal function after upper femoral fracture in elderly people: persistence of stimulation and the roles of adrenocorticotrophic hormone and immobility. Age Ageing 19 (5): 304–310PubMedCrossRefGoogle Scholar
  169. Rogowski P, Siersback-Nielsen K, Hansen M (1974) Seasonal variations in neonatal thyroid function. J Clin Endocrinol Metab 39: 919–922PubMedCrossRefGoogle Scholar
  170. Rose SR, Nisula BC (1989) Circadian variation of thyrotropin in childhood. J Clin Endocrinol Metab 68: 1086–1090PubMedCrossRefGoogle Scholar
  171. Rowe JW, Troen BR (1980) Sympathetic nervous system and aging in man. Endocr Rev 1: 167–179PubMedCrossRefGoogle Scholar
  172. Rubin PC, Scott PJW, McLean K, Reid JL (1982) Noradrenaline release and clearance in relation to age and blood pressure in man. Eur J Clin Invest 12: 121–125PubMedCrossRefGoogle Scholar
  173. Rudman D, Feller AG, Nagraj HS, Gergans GA, Lalitha PY, Goldberg AF, Schlenker RA, Cohn L, Rudman IW, Mattson DE (1990) Effects of human GH in men over 60 years old. N Engl J Med 323 (1): 1–6PubMedCrossRefGoogle Scholar
  174. Sack RL, Lewy AJ, Erb DE, Vollmer WM, Singer CM (1986) Human melatonin production decreases with age. J Pineal Res 3: 379–388PubMedCrossRefGoogle Scholar
  175. San Martin M, Touitou Y (1996) Day-night differences in the effects of gonadal hormones on melatonin release from perfused rat pineals. Evidence of a circadian control. Steroids 61: 27–32Google Scholar
  176. Sassin J, Frantz AG, Kapen S, Weitzman E (1973) The nocturnal rise of human prolactin is dependent on sleep. J Clin Endocrinol Metab 37: 436–440PubMedCrossRefGoogle Scholar
  177. Sauerbier I (1981) Circadian system and teratogenicity of cytostatic drugs. Prog Clin Res 59C: 143–149Google Scholar
  178. Sauerbier I (1983) Embryotoxische Wirkung von Zytostatika in Abhängigkeit von der Tageszeit der Applikation bei Mäusen. Verh Anat Ges 77: 147–149Google Scholar
  179. Sauerbier I (1986) Circadian variation in teratogenic response to dexamethasone in mice. Drug Chem Toxicol 9: 25–31PubMedCrossRefGoogle Scholar
  180. Sauerbier I (1987) Circadian modification of ethanol damage in utero in mice. Am J Anat 178: 170–174PubMedCrossRefGoogle Scholar
  181. Sauerbier I (1988) Circadian influence on ethanol-induced intrauterine growth retardation in mice. Chronobiol Int 5: 211–216PubMedCrossRefGoogle Scholar
  182. Sauerbier I (1989) Embryotoxicity of drugs: possible mechanisms of action. In: Lemmer B (ed) Chronopharmacology. Cellular and biochemical interactions. Dekker, New York, pp 683–697Google Scholar
  183. Sauerbier I (1994) Rhythms in drug-induced teratogenesis. In: Touitou Y, Haus E (eds) Biological rhythms in clinical medicine. Springer, Berlin Heidelberg New York, pp 151–157Google Scholar
  184. Schmidt R (1978) Zur zircadianen Modifikation der pränatal-toxischen Wirkung von Cyclophosphamid. Biol Rundsch 16: 243–248Google Scholar
  185. Schramm A, Pusch HJ, Franke H, Halberg F, Cugini P, Scavo D (1980a) Circadian exploration of serum cortisol (F) and pituitary growth hormone (GH) as function of age and sex. In: Proceedings of the XXVIIIth international congress of physiological sciences. Budapest, 28:38 (abstract 3076)Google Scholar
  186. Schramm A, Pusch HJ, Müller W, Franke H, Halberg F, Cuginin P, Scavo D (1980b) Circadian exploration of serum prolactin, growth hormone, cortisol, and aldosterone as function of age and sex. In: Proceedings of the XXVth international congress of internal medicine. Hamburg, 15:783 (abstract 3642)Google Scholar
  187. Schultz S, Nyce JW (1991) Inhibition of isoprenylation and p21 membrane association by dehydroepiandrosterone in human colonic adenocarcinoma cells in vitro. Cancer Res 51: 6563–6567Google Scholar
  188. Schwartz AG, Whitcomb JM, Nyce JW, Lewbart ML, Pashko LL (1988) Dehydroepiandrosterone and structural analogs: a new class of cancer chemopreventive agents. Adv Cancer Res 51: 391–423PubMedCrossRefGoogle Scholar
  189. Sharma M, Palacios-Bois J, Schwartz G, Iskandar H, Thakur M, Quirion R, Nair NP (1989) Circadian rhythms of melatonin and cortisol in aging. Biol Psychiatry 25: 305–319PubMedCrossRefGoogle Scholar
  190. Sherman B, Wysham C, Pfohl B (1985) Age-related changes in the circadian rhythm of plasma cortisol in man. J Clin Endocrinol Metab 61: 439–443PubMedCrossRefGoogle Scholar
  191. Shibasaki T, Shizume K, Masuda A, Nakahara M, Jibiki K, Demura H, Wakabayashi I, Ling N (1984) Age related changes in plasma growth hormone response to growth hormone releasing factor in man. J Clin Endocrinol Metab 58 (1): 212–214PubMedCrossRefGoogle Scholar
  192. Sisson TRC, Root AW, Kendall N (1974) Biologic rhythm of plasma human growth hormone in newborns of low birth weight. In: Scheving LE, Halberg F, Pauly JE (eds) Chronobiology. Igaku Shoin, Tokyo, pp 348–352Google Scholar
  193. Skene DJ, Vivien-Roels B, Sparks DL, Hunsaker JC, Pévet P, Ravid D, Swaab DF (1990) Daily variation in the concentration of melatonin and 5-methoxytryptopholGoogle Scholar
  194. in the human pineal gland• effect of age and Alzheimer’s disease. Brain Res 528:170–174Google Scholar
  195. Smaaland R, Sothern RB (1994) Circadian cytokinetics of murine and human bone marrow and human cancer. In: Hrushesky WJM (ed) Circadian cancer therapy. CRC Press, Boca Raton, pp 119–163Google Scholar
  196. Smith E (1861) Draft of historic review: from periodic fever to chronobiology. P Lavie, personal communicationGoogle Scholar
  197. Smolensky MH, Sargent FS II (1972) Chronobiology of the life sequence. In: Itoh S, Ogata K, Yoshimura H (eds) Advances in climatic physiology. Igaku Shoiu, Tokyo, pp 281–318CrossRefGoogle Scholar
  198. Smolensky MH, Tatar SE, Bergman SA, Losman JG, Barnard CN, Dacso CC, Kraft IA (1976) Circadian rhythmic aspects of human cardiovascular function: a review by chronobiologic statistical methods. Chronobiologia 3: 337–371PubMedGoogle Scholar
  199. Sonka J (1976) Dehydroepiandrosterone metabolic effects. ACTA Univ Carol 71: 9–137Google Scholar
  200. Sothern RB, Halberg F (1986) Circadian and infradian blood pressure rhythms of a man 20 to 37 years of age. In: Halberg F, Reale L, Tarquini B (eds) Proceedings of the 2nd international conference on the medico-social aspects of chronobiology, Florence, 2 Oct 1984. Istituto Italiano di Medicine Sociale, Rome, pp 395–416Google Scholar
  201. Spieker C, Wienecke M, Grotemeyer K-H, Suss M, Barenbrock M, Zierden E, Rahn K-H, Zidek W (1991) Circadian blood pressure rhythms in elderly hypertensive patients. J Int Med Res 19: 342–347PubMedGoogle Scholar
  202. Sterman MB (1967) Relationship of intrauterine fetal activity to maternal sleep stage. Exp Neurol [Suppl] 19: 98–106CrossRefGoogle Scholar
  203. Sturtevant RP, Garber SL (1985) Circadian exposure to ethanol affects the severity of cerebellar cell dysgenesis. Anat Rec 211: 187Google Scholar
  204. Sunderland T, Merrill CR, Harrington MG, Lawlor BA, Molchan SE, Martinez R, Murphy DL (1989) Reduced plasma dehydroepiandrosterone concentrations in Alzheimer’s disease (letter). Lancet 2 (2): 570PubMedCrossRefGoogle Scholar
  205. Swoyer J, Irvine P, Sackett-Lundeen L, Conlin L, Lakatua DJ, Haus E (1989) Circadian hematologic time structure in the elderly. Chronobiol Int 6 (2): 131–137PubMedCrossRefGoogle Scholar
  206. Tan DX, Chen LD, Poeggeler B, Manchester LC, Reiter RJ (1993) Melatonin: a potent, endogenous hydroxyl radical scavenger. Endocr J 1: 57–60Google Scholar
  207. Tepas DI, Duchon JC, Cersten AH (1993) Shiftwork and the older worker. Exp Aging Res 19 (4): 295–320PubMedCrossRefGoogle Scholar
  208. Thomas DR, Miles A (1989) Melatonin secretion and age. Biol Psychiatry 25: 363–369CrossRefGoogle Scholar
  209. Thompson ME, Nicolau GY, Lakatua DJ, Sackett-Lundeen L, Plinga L, Bogdan C, Robu E, Ungureanu E, Petrescu E, Haus E (1987) Endocrine factors of blood pressure regulation in different age groups. In: Pauly JE, Scheving LE (eds) Advances in chronobiology, part B. Liss, New York, pp 79–95Google Scholar
  210. Ticher A, Sackett-Lundeen L, Ashkenazi IE, Haus E (1994) Human circadian time structure in subjects of different gender and age. Chronobiol Int 11 (6): 349–355PubMedCrossRefGoogle Scholar
  211. Ticher A, Haus E, Ron IG, Sackett-Lundeen L, Ashkenazi IE (1995) The pattern of hormonal circadian time structure (acrophase) as an indicator of breast cancer risk. (submitted for publication)Google Scholar
  212. Timiras PS, Quay WD, Vernadakis A (eds) (1995) Hormones and aging. CRC Press, Boca RatonGoogle Scholar
  213. Touitou Y (1987) Le vieillissement des rythmes biologiques chez l’homme. Pathol Biol 35 (6): 1005–1012PubMedGoogle Scholar
  214. Touitou Y, Haus E (1994a) Biologic rhythms from biblical to modern times. A preface. In: Touitou Y, Haus E (eds) Biologic rhythms in clinical and laboratory medicine. Springer, Berlin Heidelberg New York, pp 1–5Google Scholar
  215. Touitou Y, Haus E (1994b) Aging of the human endocrine and neuroendocrine time structure. Ann N Y Acad Sci 719: 378–397PubMedCrossRefGoogle Scholar
  216. Touitou Y, Touitou C, Bogdan A, Beck H, Reinberg A (1978) Serum magnesium circadian rhythm in human adults with respect to age, sex and mental status. Clin Chim Acta 87: 35–41PubMedCrossRefGoogle Scholar
  217. Touitou Y, Fevre M, Lagoguey M, Carayon A, Bogdan A, Reinberg A, Beck H, Cesselin F, Touitou C (1981) Age and mental health-related circadian rhythm of plasma levels of melatonin, prolactin, luteinizing hormone and follicule-stimulating hormone in man. J Endocrinol 91: 467–475PubMedCrossRefGoogle Scholar
  218. Touitou Y, Sulon J, Bogdan A, Touitou C, Reinberg A, Beck H, Sodoyez JC, Van Cauwenberge H (1982) Adrenal circadian system in young and elderly human subjects: a comparative study. J Endocrinol 93: 201–210PubMedCrossRefGoogle Scholar
  219. Touitou Y, Carayon A, Reinberg A, Bogdan A, Beck H (1983a) Differences in the seasonal rhythmicity of plasma prolactin in elderly human subjects. Detection in women but not in men. J Endocrinol 96: 65–71Google Scholar
  220. Touitou Y, Sulon J, Bogdan A, Reinberg A, Sodoyez JC, Demey-Ponsart E (1983b) Adrenocortical hormones ageing and mental condition: seasonal and circadian rhythms of plasma 18-hydroxy-1 l-deoxycorticosterone, total and free cortisol and urinary corticosteroids. J Endocrinol 96: 53–64PubMedCrossRefGoogle Scholar
  221. Touitou Y, Fevre M, Bogdan A, Reinberg A, De Prins J, Beck H, Touitou C (1984) Patterns of plasma melatonin with ageing and mental condition: stability of nycotohemeral rhythms and differences in seasonal variations. Acta Endocrinol (Copenh) 106: 145–151Google Scholar
  222. Touitou Y, Touitou C, Bogdan A, Reinberg A, Auzeby A, Beck H, Guillet P (1986) Differences between young and elderly subjects in seasonal and circadian variations of total plasma proteins and blood volume as reflected by hemoglobin, hematocrit, and erythrocyte counts. Clin Chem 32: 801–804PubMedGoogle Scholar
  223. Townsley JD, Dubin IVH, Grannis GF, Gortman J, Crystle CD (1973) Circadian rhythms of serum and urinary estrogens in pregnancy J Clin Endocrinol 36: 289–295Google Scholar
  224. Trentini GP, DeGaetani C, Criscuolo M (1991) Pineal gland and aging. Aging 3:103–106 Trentini GP, Genazzani AR, Criscuolo M (1992) Melatonin treatment delays re-Google Scholar
  225. productive aging of female rat via the opiatergic system. Neuroendocrinology 56:364–370Google Scholar
  226. Tune G (1969) Sleep and wakefulness in 509 normal adults. Br J Med Psychol 42: 75–80PubMedCrossRefGoogle Scholar
  227. Uezono K, Haus E, Swoyer J, Kawasaki T (1984) Circaseptan rhythms in clinically healthy subjects. In: Haus E, Kabat H (eds) Chronobiology 1981–1983. Karger, New York, pp 257–262Google Scholar
  228. Uezono K, Sackett-Lundeen L, Kawasaki T, Omae T, Haus E (1987) Circaseptan rhythm in sodium and potassium excretion in salt sensitive and salt resistant Dahl rats. Prog Clin Biol Res 227A: 297–307Google Scholar
  229. Vanderkar LD, Brownfield MS (1993) Serotonergic neurons and neuroendocrine function. News Physiol Sci 8: 202Google Scholar
  230. Vermeulen A (1980) Andrenal androgens and aging. In: Thijssen JHH, Siiteri PK (eds) Adrenal androgens. Raven, New York, pp 207–217Google Scholar
  231. Vestal RE, Wood AJ, Shand DG (1979) Reduced beta-adrenoceptor sensitivity in the elderly. Clin Pharmacol Ther 26(2)181–186Google Scholar
  232. Visser GHA, Carse EA, Goodman JDS, Johnson P (1982a) A comparison of episodic heart-rate patterns in the fetus and newborn. Br J Obstet Gynecol 89: 50–55CrossRefGoogle Scholar
  233. Visser GHA, Goodman JDS, Levine, Dawes GS (1982b) Diurnal and other cyclic variations in human fetal heart rate near term. Am J Obstet Gynecol 142: 535–544PubMedGoogle Scholar
  234. Vitiello MV, Smallwood RG, Avery DH, Pascualy RA, Martin DC, Prinz PN (1986) Circadian temperature rhythms in young adult and aged men. Neurobiol Aging 7: 97–100PubMedCrossRefGoogle Scholar
  235. Waldhauser F, Weiszenbacher G, Frisch H, Zeitlhuber U, Waldhauser M, Wurtman RJ (1984) Fall in nocturnal serum melatonin during prepuberty and pubescence. Lancet 1: 362–365PubMedCrossRefGoogle Scholar
  236. Wallin BG, Sundlof G (1979) A quantitative study of muscle nerve sympathetic activity in resting normotensive and hypertensive subjects. Hypertension 1: 67–77PubMedCrossRefGoogle Scholar
  237. Webb W (1969) Twenty-four hour sleep cycling. In: Kales A (ed) Sleep: physiology and pathology. Lippincott, Philadelphia, p 53Google Scholar
  238. Webb W, Swinburne H (1971) An observational study of sleep in the aged. Percept Mot Skills 32: 895–398PubMedCrossRefGoogle Scholar
  239. Weigle WD (1975) Cyclical production of antibody as a regulatory mechanism in the immune response. Adv Immunol 21: 87–111PubMedCrossRefGoogle Scholar
  240. Weitzman ED, Moline ML, Czeisler CA, Zimmerman JC (1982) Chronobiology of aging: temperature, sleep-wake rhythms and entrainment. Neurobiol Aging 3: 299–309PubMedCrossRefGoogle Scholar
  241. Wessler R, Rubin M, Sollberger A (1976) Circadian rhythm of activity and sleep-wakefulness in elderly institutionalized patients. J Interdiscipl Cycle Res 7: 333CrossRefGoogle Scholar
  242. Weyer R (1975) The meaning of circadian rhythmicity with regard to aging. Verh Dtsch Ges Pathol 59: 160Google Scholar
  243. Weyer RA (1979) The circadian system of man. Springer, Berlin Heidelberg New YorkGoogle Scholar
  244. Wilf-Miron R, Peleg L, Goldman B, Ashkenazi IE (1992) Rhythms of enzymatic activity in maternal and umbilical cord blood. Experientia 48: 520–523PubMedCrossRefGoogle Scholar
  245. Wu J, Cornélissen G, Tarquini B, Mainardi G, Cagnoni M, Fernandez JR, Hermida RC, Tamura K, Kato J, Kato K, Halberg F (1990) Circaseptan and circannual modulation of circadian rhythms in neonatal blood pressure and heart rate. In: Hayes DK, Pauly JE, Reiter RJ (eds) Chronobiology: its role in clinical medicine, general biology, and agriculture, part A. Wiley-Liss, New York, pp 643–652Google Scholar
  246. Yatsyk GV, Syutkina EV, Polyakov YA, Safin SR, Grigoriev AE, Tagbloom M, Halberg E, Halberg F (1991) Circadian variations in urinary Na+, K+, and 11oxycorticoid (11-OCS) excretion by premature infants. Biochim Clin 15: 156–157Google Scholar
  247. Yen SSC, Jaffe RB (eds) (1991) Reproductive endocrinology. Saunders, PhiladelphiaGoogle Scholar
  248. Zepelin H, MacDonald CS (1987) Age differences in autonomic variables during sleep. J Gerontol 42: 142–146PubMedCrossRefGoogle Scholar
  249. Zhengrong W, Xuechuan S, Cornelissen G, Jinyi W, Ling M, Degni C, Zhennan X, Halberg F (1993) Doppler flurometer-assessed circadian rhythms in neonatal cardiac function, family history, and intrauterine growth retardation. Am J Perinatology 10: 119–125CrossRefGoogle Scholar
  250. Zurbrügg RP (1976) Hypothalamic-pituitary-adrenocortical regulation: a contribution to its assessment, development and disorders in infancy and childhood with special reference to plasma circadian rhythm. Karger, Basle (Monographs in paediatrics, vol 7 )Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • E. Haus
  • Y. Touitou

There are no affiliations available

Personalised recommendations