Skip to main content

Genetics and Molecular Biology of Circadian Clocks

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 125))

Abstract

Oscillations characterize a state of temporal order in nonlinear dynamic systems far from equilibrium. The oscillatory state requires interactive structures (activating or inhibiting interactions) between the system components, energy dissipation and a set of specific conditions. Living systems demonstrate a wide spectrum of oscillations, ranging from action potentials to circadian and annual rhythms (Rensing and Jaeger 1985). An even wider spectrum of oscillations exists in nonliving, i.e., physical and chemical, systems, showing that the oscillatory state as such is not confined to living systems and does not require genetic information. Cells and organisms, however, have made use of the available oscillatory mechanisms in the course of evolution, for example, for signal transmission (action potentials, pulsatile hormone release, intracellular calcium waves), for locomotory or pumping mechanisms (cilia, leg, wing movements, heartbeat, breathing, peristaltic muscle contractions) and for “clock” functions (circadian, lunar and annual rhythms). The term “clock” has been introduced mainly as a metaphor for the basic mechanism of the latter rhythms because it directs a number of processes (“hands” of the clock) in a rhythmic fashion. These rhythms probably allow optimal adaptation of the organism to the periodic changes in the environment. They also establish a state of temporal order that may per se represent a functional advantage. In man, a multitude of circadian rhythms in almost every functional variable have been described, whose maxima and minima map to defined phases of sleep and wakefulness (or night and day, respectively).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aronson BD, Johnson KA, Loros JJ, Dunlap JC (1994a) Negative feedback defining a circadian clock: autoregulation of the clock gene frequency. Science 263: 1578–1584

    Article  PubMed  CAS  Google Scholar 

  • Aronson BD, Johnson KA, Dunlap JC (1994b) Circadian clock locus frequency: protein encoded by a single open reading frame defines length and temperature compen-sation. Proc Natl Acad Sci USA 91: 7683–7687

    Article  PubMed  CAS  Google Scholar 

  • Borgeson CE, Bowman BJ (1985) Blue light-reducible cytochromes in membrane fractions from Neurospora crassa. Plant Physiol 78: 433–437

    Article  PubMed  CAS  Google Scholar 

  • Bruce VG (1972) Mutants of the biological clock in Chlamydomonas reinhardtii. Genetics 77: 211–230

    Google Scholar 

  • Carter PJ, Nimmo HG, Fewson CA, Wilkins MB (1991) Circadian rhythms in the activity of a plant protein kinase. EMBO J 10: 2063–2068

    PubMed  CAS  Google Scholar 

  • Crosthwaite SS, Loros JJ, Dunlap JC (1995) Light-induced resetting of a circadian clock is mediated by a rapid increase in frequency transcript. Cell 81: 1003–1012

    Article  PubMed  CAS  Google Scholar 

  • Curtin KD, Huang ZJ, Rosbash M (1995) Temporally regulated nuclear entry of the Drosophila period protein contributes to the circadian clock. Neuron 14: 363–372

    Article  Google Scholar 

  • Dowse HP, Hall JC, Ringo JM (1987) Circadian and ultradian rhythms in period mutants of Drosophila melanogaster. Behav Genet 17: 19–35

    Article  PubMed  CAS  Google Scholar 

  • Dunlap J (1993) Genetic analysis of circadian clocks. Annu Rev Physiol 55: 683–728

    Article  PubMed  CAS  Google Scholar 

  • Edery I, Zwiebel LJ, Dembinska ME, Rosbash M (1994a) Temporal phosphorylation of the Drosophila period protein. Proc Natl Acad Sci USA 91: 22–60

    Article  Google Scholar 

  • Edery I, Rutila JE, Rosbash M (1994b) Phase shifting of the circadian clock by induction of the Drosophila period protein. Science 263: 237

    Article  PubMed  CAS  Google Scholar 

  • Edmunds LE (1988) Cellular and molecular bases of biological clocks. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Ehret CF, Trucco E (1967) Molecular models for the circadian clock I. The chronon concept. J Theor Biol 15: 240–262

    Google Scholar 

  • Ewer J, Frisch B, Rosbash M, Hall J (1992) Expression of the period clock gene in different cell types within the adult brain of Drosophila melanogaster. J Neurosci 12: 3321–3349

    PubMed  CAS  Google Scholar 

  • Feldman JF, Hoyle M (1973) Isolation of circadian clock mutants of Neurospora crassa. Genetics 75: 605–613

    PubMed  CAS  Google Scholar 

  • Feldman JF, Gardner G, Denison R (1979) Genetic analysis of the circadian clock of Neurospora. In: Suda M, Hayaishi O, Nakagawa H (eds) Biological rhythms and their central mechanism. Elsevier/North Holland, Amsterdam, pp 57–66

    Google Scholar 

  • Gebauer G, Kallies A, Rensing L (submitted for publication) Heat shock-induced changes in second messenger levels and differentiation of Neurospora crassa Goodwin BC (1963) Temporal organization in cells. Academic, London

    Google Scholar 

  • Hall JC (1990) Genetics of circadian rhythms. Annu Rev Genet 24: 659–697

    Article  PubMed  CAS  Google Scholar 

  • Hall JC (1995) Tripping along the trail of the molecular mechanisms of biological clocks. TINS 18: 230–240

    PubMed  CAS  Google Scholar 

  • Hardin PE, Hall JC, Rosbash M (1992) Behavioral and molecular analyses suggest that circadian output is disrupted by disconnected mutants in Drosophila melanogaster. EMBO J 11: 1–6

    PubMed  CAS  Google Scholar 

  • Huang ZL, Edery I, Rosbash M (1993) PAS is a novel dimerization domain shared by the Drosophila period protein and several transcription factors. Nature 364: 259–262

    Article  PubMed  CAS  Google Scholar 

  • Huang ZJ, Curtin KD, Rosbash (1995) Per protein interactions and temperature compensation of a circadian clock in Drosophila. Science 267: 1169–1172

    CAS  Google Scholar 

  • Kallies A, Gebauer G, Rensing L (1996) Light signal pathways to the circadian clock of Neurospora crassa. Photochem Photobiol 63: 336–343

    Article  CAS  Google Scholar 

  • Kay SA, Millar AJ (1993) Circadian regulated cab gene expression in higher plants. In: Young MW (ed) Molecular genetics of biological rhythms. Dekker, New York, pp 73–89

    Google Scholar 

  • Kloppstech K (1985) Diurnal and circadian rhythmicity in the expression of light-induced plant nuclear messenger RNAs. Planta 165: 502–506

    Article  CAS  Google Scholar 

  • Konopka RJ, Benzer S (1971) Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci USA 68: 2112–2116

    Article  PubMed  CAS  Google Scholar 

  • Lakin-Thomas P, Coté GG, Brody S (1990) Circadian rhythms in Neurospora. CRC Crit Rev Microbiol 17: 365–416

    Article  CAS  Google Scholar 

  • Levine JD, Casey CI, Kalderson KK, Jackson FR (1994) Altered circadian pacemaker functions and cyclic cAMP rhythms in the Drosophila learning mutant Dunce. Neuron 13: 967–974

    Article  PubMed  CAS  Google Scholar 

  • Loros JJ (1995) The molecular basis of the Neurospora clock. Neurosciences 7: 3–13

    Article  CAS  Google Scholar 

  • Loros JJ, Denome SA, Dunlap JC (1989) Molecular cloning of genes under control of the circadian clock in Neurospora. Science 243: 385–388

    Article  PubMed  CAS  Google Scholar 

  • Menaker M, Refinetti R (1993) The tau mutation in golden hamsters. In: Young MW (ed) Molecular genetics of biological rhythms. Dekker, New York, pp 255–269

    Google Scholar 

  • Morse D, Milos PM, Roux E, Hastings JW (1989) Circadian regulation of bioluminescence in Gonyaulax involves translational control. Proc Natl Acad Sci USA 86: 172–176

    Article  PubMed  CAS  Google Scholar 

  • Pittendrigh CS (1974) Circadian oscillations in cells and the circadian organization of multicellular systems. In: Schmitt FO, Worden FG (eds) The neurosciences third study progam. MIT Press, Cambridge, pp 437–458

    Google Scholar 

  • Piechulla B (1993) “Circadian clock” directs the expression of plant genes. Plant Molec Biol 22:533–542

    Google Scholar 

  • Price JL, Dembinska ME, Young MW, Rosbash M (1995) Suppression of PERIOD protein abundance by the Drosophila clock mutation timeless. EMBO J 14: 4044–4049

    PubMed  CAS  Google Scholar 

  • Ralph MR, Menaker M (1988) A mutation of the circadian system in golden hamsters. Science 241: 1225–1227

    Article  PubMed  CAS  Google Scholar 

  • Rensing K, Kallies A, Gebauer G, Mohsenzadeh S (1995) The effects of temperature change on the circadian clock of Neurospora. In: Waterhouse J, Redfern P (eds) Circadian clocks and their adjustment. Ciba Symp 7: 26–50

    Google Scholar 

  • Rensing L, Hardeland R (1990) The cellular mechanism of circadian rhythms-a view on evidence, hypotheses and problems. Chronobiol Intern 7: 353–370

    Article  CAS  Google Scholar 

  • Rensing L, Jaeger N (eds) (1985) Temporal order. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Rensing L, Kohler W, Gebauer G, Kallies A (1993) Protein phosphorylation and circadian rhythms. In: Battey HN, Dickinson HG, Hetherington AM (eds) Post-translational modifications in plants. Cambridge University Press, Cambridge, pp 171–185

    Chapter  Google Scholar 

  • Roenneberg T, Morse D (1993) Two circadian oscillators in one cell. Nature 362: 362–364

    Article  Google Scholar 

  • Ruoff P, Rensing L (1996) The temperature-compensated Goodwin model simulates many circadian clock properties J Theor Biol 179: 275–285

    Google Scholar 

  • Ruoff P, Mohsenzadeh S, Rensing L (1996) Circadian rhythms and protein turnover: The influence of temperature on the period lengths of clock mutants simulated by the Goodwin Oscillator. Naturwiss (in press)

    Google Scholar 

  • Sassone-Corsi P (1994) Rhythmic transcription and autoregulatory loops: winding up the biological clock. Cell 78: 361–364

    Article  PubMed  CAS  Google Scholar 

  • Saunders DS (1990) The circadian basis of ovarian diapause in Drosophila melanogaster. Is the period gene causally involved in photoperiodic time measurement? J Biol Rhythms 5.315–332

    Google Scholar 

  • Schwartz WJ, Takeuchi J, Shannon W, Davis EM, Aronin N (1994) Temporal regulation of light-induced Fos and Fos-like protein expression in the ventrolateral subdivision of the rat suprachiasmatic nucleus. Neuroscience 58: 573–583

    Article  PubMed  CAS  Google Scholar 

  • Sommer T, Chambers JAA, Eberle J, Lauter FR, Russo VEA (1989) Fast light-regulated genes of Neurospora crassa. Nucleic Acid Res 17: 5713–5723

    Article  PubMed  CAS  Google Scholar 

  • Vitaterna MH, King DP, Chang AM, Kornhauser JM, Lowrey PL, McDonald JP, Dove WF, Pinto LH, Turek FW, Takahashi JS (1994) Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 264: 719–725

    Google Scholar 

  • Vogelbaum MA, Menaker M (1992) Temporal chimeras produced by hypothalamic transplants. J Neurosci 12: 3619–3621

    PubMed  CAS  Google Scholar 

  • von der Heyde, F, Wilkens, A, Rensing L (1992) The effects of temperature on the circadian rhythms of flashing and glow in Gonyaulax polyedra: are the two rhythms controlled by two oscillators? J Biol Rhythms 7: 115–123

    Article  PubMed  Google Scholar 

  • Vosshall LB, Price JL, Sehgal A, Saez L, Young MW (1994) Block in nuclear localization of period protein by a second clock mutation, timeless. Science 263: 1606–1609

    Article  PubMed  CAS  Google Scholar 

  • Winfree AT (1980) The geometry of biological time. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Young MW (1993) Molecular genetics of biological rhythms. Dekker, New York Zeng H, Quian Z, Myers MP, Rosbash M (1996) A light-entrainment mechanism for the Drosophila circadian clock. Nature 380: 129–135

    Google Scholar 

  • Zeng H, Hardin PE, Rosbash M (1994) Constitutive overexpression of the Drosophila period protein inhibits period mRNA cycling. EMBO J 13: 3590–3598

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rensing, L. (1997). Genetics and Molecular Biology of Circadian Clocks. In: Redfern, P.H., Lemmer, B. (eds) Physiology and Pharmacology of Biological Rhythms. Handbook of Experimental Pharmacology, vol 125. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09355-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09355-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08265-8

  • Online ISBN: 978-3-662-09355-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics