Chronobiology and Chronopharmacology of the Haemopoietic System

  • R. Smaaland
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 125)


The bone marrow, an extremely complex tissue comprising approximately 4.5% of an adult’s body weight (a mass comparable to the liver) (Nathan 1988), is found in the ends of flat bones (sternum, ribs, skull, vertebrae and innominates) and contains the haemopoietic stem cells, which give rise to the many developing functional blood cell lineages within the marrow spaces. After birth, the bone marrow is the production site for all types of blood cells, which are released through vascular channels into the peripheral blood according to the needs of the body, mediated through different feedback mechanisms. Haemopoiesis is the multi-phase process of cell proliferation and gradual maturation, until the end stage is reached with a population of mature cells that can exert their specialized functions, but are no longer capable of cell proliferation (Laerum et al. 1989).


Circadian Rhythm Human Bone Marrow Circadian Variation Myeloid Progenitor Cell Haemopoietic Stem Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aardal NP (1984) Circannual variations of circadian periodicity in murine colony-forming cells (CFU-C). Exp Hematol 12: 61–67PubMedGoogle Scholar
  2. Aardal NP, Laerum OD (1983) Circadian variations in mouse bone marrow. Exp Hematol 11: 792–801PubMedGoogle Scholar
  3. Aardal NP, Laerum OD, Paukovits WR (1982) Biological properties of partially purified granulocyte extract (chalone) assayed in soft agar culture. Virchows Arch [B] Cell Pathol 38: 253–261CrossRefGoogle Scholar
  4. Abo T, Kawate T, Itoh K, Kumagai K (1981) Studies on the bioperiodicity of the immune response. I. Circadian rhythms of human T, B, and K cell traffic in the peripheral blood. J Immunol 126: 1360–1363Google Scholar
  5. Abrahamsen JF, Smaaland R, Laerum OD (1994) Circadian stage dependent variations in the DNA synthesis phase of human bone marrow subpopulations. 6th international conference on chronopharmacology and chronotherapeutics, abstract VIIIa-2Google Scholar
  6. Abrahamsen JF, Lund-Johansen F, Laerum OD, Schem BC, Sletvold O, Smaaland R (1995) Flow cytometric assessment of peripheral blood contamination and proliferative activity of human bone marrow cell populations. Cytometry 19: 77–85PubMedCrossRefGoogle Scholar
  7. Aherne GW (1989) An introduction to chronopharmacology. In: Arendt J, Minors S, Waterhouse JM (eds) Biological rhythms in clinical practice. Wright, London, pp 8–19Google Scholar
  8. Akagawa T, Onari K, Peterson WJ, Makinodan T (1984) Differential effect on mitotically active and inactive bone marrow stem cells and splenic stem T cells in mice. Cell Immunol 86: 53–63PubMedCrossRefGoogle Scholar
  9. Angeli A, Frajria R, Depaoli R, Fonzo D, Ceresa F (1978) Diurnal variation of prednisolone binding to serum corticosteroid binding globulin in man. Clin Pharmacol Ther 23: 47–53PubMedGoogle Scholar
  10. Arendt J, Minors DS, Waterhouse JM (1989) Basic concepts and implications. In: Arendt J, Minors S, Waterhouse JM (eds) Biological rhythms in clinical practice. Wright, London, pp 3–7Google Scholar
  11. Bailleul F, Lévi F, Reinberg A (1986) Interindividual differences in the circadian hematologic time structure of cancer patients. Chronobiol Int 3: 47–54PubMedCrossRefGoogle Scholar
  12. Bartlett P, Haus E, Tuason T, Sackett-Lundeen L, Lakatua D (1984) Circadian rhythm in number of erythroid and granulocytic colony forming units in culture (ECFU-C and GSFU-C) in bone marrow of BDF1 male mice. Chronobiology 1982–1983. Karger, BaselGoogle Scholar
  13. Bartter FC, Delea CS, Halberg F (1962) A map of blood and urinary changes related to circadian variations in adrenal cortical function in normal subjects. Ann NY Acad Sci 98: 969–983PubMedCrossRefGoogle Scholar
  14. Bellamy WT, Alberts DS, Dorr RT (1988) Daily variation in non-protein sulfhydryl levels of human bone marrow. Eur J Cancer Clin Oncol 11: 1759–1762CrossRefGoogle Scholar
  15. Benavides-Orgaz M (1991) Cancer avancé de l’ovaire: approche chronobiologique comme nouvelle stratégie du traitement et de la surveillance clinique et biologique. Thesis, University of ParisGoogle Scholar
  16. Berger J (1980) Circannual rhythms in the blood picture of laboratory rats. Folia Haematol (Leipz) 107: 54–60Google Scholar
  17. Berger J (1980) Seasonal influences on circadian rhythms in the blood picture of laboratory mice. Z Versuchstierkd 22: 122–134PubMedGoogle Scholar
  18. Bertouch JV, Roberts-Thompson P, Bradley J (1983) Diurnal variation of lymphocyte subsets identified by monoclonal antibodies. Br Med J 286: 1171–1172CrossRefGoogle Scholar
  19. Blank MA (1987) Characteristics of the distribution of mitotic activity indices in human malignant neoplasms. Dokl Akad Nauk SSSR 297: 979–981PubMedGoogle Scholar
  20. Blank MA, Cornélissen G, Neishtadt EL, Kochrev VA, Yakovlev GY, Haus E, Halberg E, Halberg F (1992) Circadian-circaseptan-circannual mitotic aspects of the bone marrow chronome of patients with malignancy. Workshop on computer methods on chronobiology and chronomedicine. Medical Review, Tokyo, pp 245–262Google Scholar
  21. Botnick LE, Hannon EC, Hellman S (1976) Limited proliferation of stem cells surviving alkylating agents. Nature 162: 68–70CrossRefGoogle Scholar
  22. Boughattas AN, Lévi F, Fournier C et al (1989) Circadian rhythm in toxicities and tissue uptake of 1,2-diaminecyclohexane (trans-1) oxalatoplatinum ( II) in mice. Cancer Res 49: 3362–3368Google Scholar
  23. Bourin P, Mansour I, Lévi F, Vilette JM, Roué R, Fiet J, Rouger P, Doinel C (1989) Perturbations précoces des rhythmes circadiens des lymphocytes T et B au cours de l’infection par le virus de l’immunodeficience humaine ( VIH ). C R Acad Sci (Paris) 308: 431–436Google Scholar
  24. Brandt L, Forssman O, Mitelman F, Odeberg H, Olofsson T, Olsson I, Svensson B (1975) Cell production and cell function in human cyclic neutropenia. Scand J Haematol 15: 228–240PubMedCrossRefGoogle Scholar
  25. Bratescu A, Teodorescu M (1981) Circannual variations in the B cell/T cell ratio in normal human peripheral blood. J Allergy Clin Immunol 68: 273–280PubMedCrossRefGoogle Scholar
  26. Brown HE, Dougherty TF (1956) The diurnal variation of blood leukocytes in normal and adrenalectomized mice. Endocrinology 58: 365–375PubMedCrossRefGoogle Scholar
  27. Bruguerolle B, Lévi F, Arnaud C, Bouvenot G, Mechkouri M, Vannetzel J, Touitou Y (1986) Alteration of physiologic circadian time structure of six plasma proteins in patients with advanced cancer. Annu Rev Chronopharmacol 3: 207–210Google Scholar
  28. Buchi KN, Hrushesky WJM, Sothern RB, Rubin N, Moore JG (1991) Circadian rhythm of cellular proliferation in the human rectal mucosa. Gastroenterology 101: 410–415PubMedGoogle Scholar
  29. Burns ER (1981) Circadian rhythmicity in DNA synthesis in untreated and saline-treated mice as a basis for improved chronochemotherapy. Cancer Res 41: 2795–2802PubMedGoogle Scholar
  30. Burns ER, Beland SS (1983) Induction by 5-fluorouracil of a major phase difference in the circadian profiles of DNA synthesis between the Ehrlich ascites carcinoma and five normal organs. Cancer Lett 20: 235–239PubMedCrossRefGoogle Scholar
  31. Butcher EC (1990) Cellular and molecular mechanisms that direct leukocyte traffic. Am J Pathol 136: 3–11PubMedGoogle Scholar
  32. Calhoun WJ, Bates ME, Schrader L, Sedgwick JB, Busse WW (1992) Characteristics of peripheral blood eosinophils in patients with nocturnal asthma. Am Rev Respir Dis 145: 577–581PubMedGoogle Scholar
  33. Canon C, Lévi F, Reinberg A, Mathé G (1985) Circulating calla-positive lymphocytes exhibit circadian rhythms in man. Leuk Res 9: 1539–1546PubMedCrossRefGoogle Scholar
  34. Chikkappa G, Borner G, Burlington H, Chanana AD, Cronkite EP, Ohl S, Pavelec M, Robertson JS (1976) Periodic oscillations of blood leukocytes, platelets and reticulocytes in a patient with chronic myelocytic leukemia. Blood 47: 1023–1030PubMedGoogle Scholar
  35. Clausen OPF, Thorud E, Bjerknes R, Elgjo K (1979) Circadian rhythms in mouse epidermal basal cell proliferation. Cell Tissue Kinet 12: 319PubMedGoogle Scholar
  36. Dale DC, Hammond WP (1988) Cyclic neutropenia: a clinical review. Blood Rev 2: 178–185PubMedCrossRefGoogle Scholar
  37. Dancey JT, Deubelbeiss KA, Harker LA, Finch CA (1976) Neutrophil kinetics in man. J Clin Invest 58: 705–715PubMedCrossRefGoogle Scholar
  38. Derer L (1960) Rhythm and proliferation with special reference to the 6-day rhythms of blood leukocyte count. Neoplasma 7: 117–133PubMedGoogle Scholar
  39. Dörmer P, Schmolke W, Muschalik P, Brinkman W (1970) Die DNS-Synthesegeschwindigkeit im Verlaufe der DNS-Synthesephase von Erythroblasten der Maus in vivo. Beitr Pathol 141: 174–186PubMedGoogle Scholar
  40. Dosik GM, Barlogie B, Göhde W, Johnston D, Tekell J L, Drewinko B (1980) Flow cytometry of DNA content in human bone marrow: a critical reappraisal. Blood 55: 734–740PubMedGoogle Scholar
  41. Edgar DM, Martin CE, Dement WC (1991) Activity feedback to the mammalian circadian pacemaker. Influence on observed measures of rhythm period length. J Biol Rhythms 6: 185–199Google Scholar
  42. English J, Dunne M, Marks W (1983) Diurnal variation in prednisolone kinetics. Clin Pharmacol Ther 33: 381–385PubMedCrossRefGoogle Scholar
  43. English J, Aherne GW, Marks V (1987) The effect of abolition of the endogenous corticosteroid rhythm on the circadian variation in methotrexate toxicity in the rat. Cancer Chemother Pharmacol 19: 287–290PubMedCrossRefGoogle Scholar
  44. Erslev AJ (1983) Production of erythrocytes. McGraw-Hill, New YorkGoogle Scholar
  45. Evans WE (1988) Clinical pharmacodynamics of anticancer drugs: a basis for extending the concept of dose-intensity. Blut 56: 241–248PubMedCrossRefGoogle Scholar
  46. Farooqi NYH, Ahmed AE (1984) Circadian periodicity of tissue glutathione and its relationship with lipid peroxidation in rats. Life Sci 34: 2413–2418CrossRefGoogle Scholar
  47. Felder M, Doré CJ, Knight SC, Ansell BM (1985) In vitro stimulation of lymphocytes from patients with rheumatoid arthritis. Clin Immunol Immunopathol 37: 253–261PubMedCrossRefGoogle Scholar
  48. Fent K, Zbinden G (1987) Toxicity of interferon and interleukin. Trends Pharmacol Sci 8: 100CrossRefGoogle Scholar
  49. Fishbein L (1984) An overview of environmental and toxicological aspects of aromatic hydrocarbons. I. Benzene. Sci Total Environ 40: 189–218CrossRefGoogle Scholar
  50. Fisher LB (1968) The diurnal mitotic rhythm in the human epidermis. Br J Dermatol 60: 75CrossRefGoogle Scholar
  51. Fried W, Barone J (1980) Residual marrow damage following therapy with cyclophosphamide. Exp Haematol 8: 610–614Google Scholar
  52. Gale RP (1988) Myelosuppressive effects of antineoplastic chemotherapy. In: Testa NG, Gale RP (eds) Hematopoiesis. Long-term effects of chemotherapy and radiation. Dekker, New York, pp 63–71Google Scholar
  53. Gatti G, Cavallo R, Sartori ML, Marinone C, Angeli A (1986) Cortisol at physiological concentrations and prostaglandin E2 are additive inhibitors of human natural killer cell activity. Immunopharmacology 11: 119–128PubMedCrossRefGoogle Scholar
  54. Gatti G, Masera R, Cavallo R, Delponte D, Sartory ML, Salvadori A, Carignola R, Angeli A (1988) Circadian variation of interferon-induced enhancement of human natural killer ( NK) cell activity. Cancer Detect Prevent 12: 431–438Google Scholar
  55. Gatti RA, Robinson WA, Deinard AS, Nesbit M, McCullough JJ, Ballow M, Good RA (1973) Cyclic leukocytosis in chronic myelogenous leukemia: new perspectives on pathogenesis and therapy. Blood 41: 771–782PubMedGoogle Scholar
  56. Goldeck H (1948) Der 24-stunden-rhytmus der erythropoese. Arztl Forsch 2: 22–27Google Scholar
  57. Goldeck H, Siegel P (1948) Die 24-Stunden-Periodik der Blutreticulocyten unter vegetativen Pharmaka. Arztl Forsch 2: 245–248PubMedGoogle Scholar
  58. Gordon MY, Barrett AJ, Gordon-Smith EC (1985) Bone marrow disorders. The biological basis of clinical problems. Blackwell Scientific, OxfordGoogle Scholar
  59. Greenberg PL, Bax I, Levin J, Andrews TM (1976) Alteration of colony-stimulating factor output, endotoxemia, and granulopoiesis in cyclic neutropenia. Am J Haematol 1: 375–385CrossRefGoogle Scholar
  60. Guerci A, Scheid P, Feugier P, Pierrez J, Frenkiel N, Guerci 0 (1990) Time-variations of pretreatment peripheral blood S + G2/M-phase size determined by flow cytometry in adult acute myeloid leukaemia. Eur J Hematol 45: 5–10Google Scholar
  61. Guerry D, Dale DC, Omine M, Perry S, Wolff SM (1973) Periodic hematopoiesis in human cyclic neutropenia. J Clin Invest 52: 3220–3230PubMedCrossRefGoogle Scholar
  62. Guiguet M, Klein B, Valleron AJ (1978) Diurnal variation and the analysis of percent labelled mitosis curves. Biomathematics and cell kinetics. Elsevier Biomedical, North HollandGoogle Scholar
  63. Haen E, Golly I (1986) Circadian variation in the cytochrome P-450 system of rat liver. Annu Rev Chronopharmacol 3: 357–361Google Scholar
  64. Halberg F, Visscher MB (1950) Regular diurnal physiological variation in eosinophil levels in five stocks of mice. Proc Soc Exp Biol Med 75: 846–847PubMedGoogle Scholar
  65. Halberg F, Visscher MB, Bittner JJ (1953) Eosinophil rhythm in mice: range of occurrence; effects of illumination, feeding and adrenalectomy. Am J Physiol 174: 109–122PubMedGoogle Scholar
  66. Halberg F, Sothern RB, Roitman B, Halberg E, Benson E, von Mayersbach H, Haus E, Scheving LE, Kanabrocki EL, Bartter FC, Delea C, Simpson HW, Tavadia HB, Fleming K, Hume P, Wilson C (1977) Agreement of circadian characteristics for total leukocyte counts in different geographic locations. XIIth international conference of the International Society of Chronobiology, pp 3–17Google Scholar
  67. Haldar C, Haussler D, Gupta D (1992) Effect on the pineal gland on circadian rhythmicity of colony forming units for granulocytes and macrophages ( CFU-GM) from rat bone marrow cell cultures. J Pineal Res 12: 79–83Google Scholar
  68. Harris B, Song R, Soong S, Diasio RB (1990) Relationship between dihydropyrimidine dehydrogenase activity and plasma 5-fluorouracil levels: evidence for circadian variation of plasma drug levels in cancer patients receiving 5-fluorouracil by protracted continuous infusion. Cancer Res 50: 197–201PubMedGoogle Scholar
  69. Harris BE, Song R, He Y-J, Soong S-J, Diasio RB (1988) Circadian rhythm of rat liver dihydropyrimidine dehydrogenase, possible relevance to fluoropyrimidine chemotherapy. Biochem Pharmacol 37: 47–59CrossRefGoogle Scholar
  70. Harrison DE (1979) Proliferative capacity of erythropoietic stem cell lines and aging: an overview. Mech Ageing Dev 9: 409–426PubMedCrossRefGoogle Scholar
  71. Haus E (1959) Endokrines System and Blut. Urban and Schwarzenberg, Munich (Handbuch der gesamten Hämatologie, vol 2 )Google Scholar
  72. Haus E (1992) Chronobiology of circulating blood cells and platelets. In: Touitou Y, Haus E (eds) Biologic rhythms in clinical and laboratory medicine. Springer, Berlin Heidelberg New York, pp 504–526CrossRefGoogle Scholar
  73. Haus E, Halberg F, Scheving LE, Pauly JE, Cardoso S, Kuhl JFW, Sothern RB, Shiotsuka RN, Hwang DS (1972) Increased tolerance of leukemic mice to arabinosyl cytosine with schedule adjusted to circadian system. Science 177: 8082CrossRefGoogle Scholar
  74. Haus E, Halberg F, Kuhl JFW, Lakatua DJ (1974) Chronopharmacology in animals. Chronobiologia 1 [Suppl 1]: 122–156PubMedGoogle Scholar
  75. Haus E, Halberg F, Scheving LE, Simpson H (1979) Chronotherapy of cancer — a critical evaluation. Int J Chronobiol 6: 67–107PubMedGoogle Scholar
  76. Haus E, Sackett LL, Haus M, Babb WK, Bixby EK (1981) Cardiovascular and ternperature adaption to phase shift by intercontinental flights–longitudinal observations. Adv Biosci 30: 375–390Google Scholar
  77. Haus E, Lakatua DJ, Swoyer J, Sackett-Lundeen L (1983) Chronobiology in hematology and immunology. Am J Anat 168: 467–517PubMedCrossRefGoogle Scholar
  78. Haus E, Taddeini L, Larson K, Bartlett P, Sackett-Lundeen L (1984) Circadian rhythm in spontaneous 3H-thymidine uptake and in PHA response of splenic cells of BDF1 male mice in vitro. Phase relations to hematologic rhythms in vivo. Chronobiology 1982–1983. Karger, BaselGoogle Scholar
  79. Haus M, Sacket-Lundeen L, Lakatua D, Haus E (1984) Circadian variation of 3H-thymidine uptake in DNA of lymphatic organs irrespective of relative length of light and dark span. J Minn Acad Sci 49: 19Google Scholar
  80. Haus E, Nicolau GY, Lakatua D, Sackett-Lundeen L (1988) Reference values for chronopharmacology. Annu Rev Chronopharmacol 4: 333–424Google Scholar
  81. Haus E, Cusulos M, Sackett-Lundeen L, Swoyer J (1990) Circadian variations in blood coagulation parameters, alpha-antitrypsin antigen and platelet aggregation and retention in clinically healthy subjects. Chronobiol Int 7: 203–216PubMedCrossRefGoogle Scholar
  82. Hecquet B, Meynadier J, Bonneterre J, Adenis L, Demaille A (1985) Time dependency in plasmatic protein binding of cisplatin. Cancer Treatment Rep 69: 79–83Google Scholar
  83. Hellman S, Botnick LE, Hannon EC, Vigneulle RM (1978) Proliferative capacity of murine hematopoietic stem cells. Proc Natl Acad Sci USA 75: 490–494PubMedCrossRefGoogle Scholar
  84. Herberman RB, Callewaert DH (1985) Mechanism of cytotoxicity by NK cells. Academic, OrlandoGoogle Scholar
  85. Hrushesky WJM (1985) Circadian timing of cancer chemotherapy. Science 228: 73–75PubMedCrossRefGoogle Scholar
  86. Hromas RA, Hutchins JT, Marke DE, Scholes VE (1981) Flow cytometric analysis of the effect of ara-C on the chronobiology of the bone marrow synthesis. Chronobiologia 8: 369–373PubMedGoogle Scholar
  87. lubal A, Aktein E, Barak I, Meytes D, Many A (1983) Cyclic leukocytosis and long survival in chronic myeloid leukemia. Acta Haematol 69: 353–357CrossRefGoogle Scholar
  88. Japha A (1900) Die Leukozyten beim gesunden and kranken Säugling. Jahrb Kinderheilkd 52: 242–270Google Scholar
  89. Kachergene NB, Koshel IV, Nartsissov RP (1972) Circadian rhythm of dehydrogenase activity in blood cells during acute leukemia in childhood. Pediatria 51: 81–85Google Scholar
  90. Kennedy BJ (1970) Cyclic leukocyte oscillations in chronic myelogenous leukemia during hydroxy-urea therapy. Blood 35: 751–760PubMedGoogle Scholar
  91. Killmann S-A, Cronkite EP, Fliedner TM, Bond VP (1962) Mitotic indices of human bone marrow cells. I. Number and cytologic distribution of mitosis. Blood 19: 743–750Google Scholar
  92. Klein B, Valleron AJ (1977) A compartmental model for the study of diurnal rhythms in cell proliferation. J Theor Biol 64: 27–42PubMedCrossRefGoogle Scholar
  93. Klevecz RR, Braly PB (1991) Circadian and ultradian cytokinetic rhythms of spontaneous human cancer. Ann NY Acad Sci 618: 257–276PubMedCrossRefGoogle Scholar
  94. Klevecz RB, Braly PS (1994) Circadian and ultradian cytokinetics of human cancers. In: Hrushesky WJM (ed) Circadian cancer therapy. CRC Press, Boca Raton, pp 165–183Google Scholar
  95. Koren S, Fleischmann R Jr (1993a) Circadian variations in myelosuppressive activity of interferon-a in mice: identification of an optimal treatment time associated with reduced myelosuppressive activity. Exp Haematol 21: 552–559Google Scholar
  96. Koren S, Fleischmann R Jr (1993b) Optimal circadian timing reduces the myelosuppressive activity of recombinant murine interferon-gamma administered to mice. J Interferon Res 13: 187–195PubMedCrossRefGoogle Scholar
  97. Krance RA, Spruce WE, Forman SJ, Rosen RB, Hecht T, Hammond WP, Blume KG (1982) Human cyclic neutropenia transferred by allogeneic bone marrow grafting. Blood 60: 1263–1266PubMedGoogle Scholar
  98. Kusnetsova SS, Parvdina GM, Yezhova VM (1977) Seasonal variations of some parameters of peripheral blood and haematogenetic organs in mice. Zh Obsliteh Biol 38: 133–140Google Scholar
  99. Laerum OD, Aardal NP (1981) Chronobiological aspects of bone marrow and blood cells. In: von Mayersbach H, Scheving LE, Pauly JE (eds) 11th international congress of anatomy, part C, biological rhythms in structure and function. Liss, New York, pp 87–97Google Scholar
  100. Laerum OD, Smaaland R (1989) Circadian and infradian aspects of the cell cycle: from past to future. Chronobiologia 16: 441–453PubMedGoogle Scholar
  101. Laerum OD, Sletvold O, Ruse T (1988) Circadian and circannual variation of cell cycle distribution in the mouse bone marrow. Chronobiol Int 5: 19–35PubMedCrossRefGoogle Scholar
  102. Laerum OD, Smaaland R, Sletvold O (1989) Rhythms in blood and bone marrow: potential therapeutic implications. In: Lemmer B (ed) Chronopharmacology. Cellular and biochemical interactions. Dekker, New York, pp 371–393Google Scholar
  103. Lajtha LG (1963) On the concept of the cell cycle. J Cell Comp Physiol 62:143 Lajtha LG (1979) Stem cell concepts. Differentiation 14: 23Google Scholar
  104. Lake BG, Tredger JM, Burke MD, Chakraborty J, Bridges JW (1976) The circadian variation of hepatic microsomal drug and steroid metabolism in the golden hamster. Chem Biol Interact 12: 81–90PubMedCrossRefGoogle Scholar
  105. Langevin AM, Koren G, Soldin S, Greenberg M (1987) Pharmacokinetic case for giving 6-mercaptopurine maintenance doses at night (letter to the editor). Lancet ii: 505–506Google Scholar
  106. Lasky LC, Ascencao J, McCullough J, Zanjian ED (1983) Steroid modulation of naturally occurring diurnal variations in circulating pluripotential haemotopoietic cells. Br J Haemotol 55: 615–622CrossRefGoogle Scholar
  107. Leszczynska-Bisswanger A, Pfulf E (1985) Diurnal variation of methotrexate transport and accumulation in hepatocytes — a consequence of variations in cellular glutathione. Biochem Pharmacol 34: 1635–1638PubMedCrossRefGoogle Scholar
  108. Lévi F, Halberg F (1982) Circaseptan (about 7-day) bioperiodicity — spontaneous and reactive — and the search for pacemaker. La Ricerca 12: 323–370Google Scholar
  109. Lévi F, Canon C, Blum JP, Mechkouri M, Reinberg A, Mathé G (1985) Circadian and/or circahemidian rhythms in nine lymphocyte-related variables from peripheral blood of healthy subjects. J Immunol 134: 217–222PubMedGoogle Scholar
  110. Lévi F, Mechkouri M, Roulon A, Bailleul F, Horvath C, Reinberg A, Mathé G (1985) Circadian rhythm in tolerance of mice for etoposide. Cancer Treat Rep 69: 1443–1445PubMedGoogle Scholar
  111. Lévi F, Adam R, Soussan A (1988) Ambulatory 5-day chronotherapy of colorectal or pancreatic cancer with continuous venous infusion of 5-fluorouracil at circadian-modulated rate. Annu Rev Chronopharmacol 5: 419–422Google Scholar
  112. Lévi F, Blazcek I, Ferlé-Vidovic A (1988) Circadian and seasonal changes in murine bone marrow colony forming cells affect tolerance for 4-tetrahydropyranyladriamycin. Exp Hematol 16: 696–701PubMedGoogle Scholar
  113. Lévi F, Canon C, Touitou Y, Reinberg A, Mathé G (1988c) Seasonal modulation of the circadian time structure of circulating T and natural killer lymphocyte subsets from healthy subjects. J Clin Invest 81: 407–413PubMedCrossRefGoogle Scholar
  114. Lévi F, Canon C, Touitou Y, Sulon J, Mechkouri M, Ponsart ED, Touboul JP, Vannetzel JM, Mowzowicz I, Reinberg A, Mathé G (1988d) Circadian rhythms in circulating T lymphocyte subtypes and plasma testosterone, total and free cortisol in five healthy men. Clin Exp Immunol 71: 329–335PubMedGoogle Scholar
  115. Lohrmann H-P, Schreml W (1982) Cytotoxic drugs and the granulopoietic system. Springer, Berlin Heidelberg New York (Recent results in cancer research, vol 81 )CrossRefGoogle Scholar
  116. Lohrmann H-P, Schreml W (1982) Granulopoietic toxicity of cytotoxic agents: pathogenesis, pathophysiology, methods of modulation, and clinical aspects. In: Lohrmann HP, Schreml W (eds) Cytotoxic drugs and the granulopoietic system. Springer, Berlin Heidelberg New York, pp 155–182CrossRefGoogle Scholar
  117. Lund-Johansen F, Bjerknes R, Laerum OD (1990) Flow cytometric assay for the measurement of human bone marrow phenotype, function and cell cycle. Cytometry 11: 610–616PubMedCrossRefGoogle Scholar
  118. Macs M, Stevens W, Scharpe S, Bosmans E, Demeyer F, Dhondt P, Peeters D, Thompson P, Cosyns P, Declerck L, Bridts C, Neels H, Wauters A, Cooreman W (1994) Seasonal variation in peripheral blood leukocyte subsets and in serum interleukin-6, and soluble interleukin-2 and -6 receptor concentrations in normal volunteers. Experientia 50: 821–829CrossRefGoogle Scholar
  119. Malek J, Suk K, Brestak M (1962) Daily rhythms of leukocytes, blood pressure, pulse rate and temperature during pregnancy. Ann NY Acad Sci 98: 1018–1091PubMedCrossRefGoogle Scholar
  120. Marler JR, Price TR, Clark GL, Muller JE, Robertson T, Mohr JP, Hier DB, Wolf PA, Caplan LR, Foulkes MR (1989) Morning increase in onset of ischemic stroke. Stroke 20: 473–476PubMedCrossRefGoogle Scholar
  121. Marshall J (1977) Diurnal variation in the occurrence of strokes. Stroke 8: 230–231PubMedCrossRefGoogle Scholar
  122. Martini E, Muller JY, Doinel C, Gastal C, Roquin H, Douay L, Salmon C (1988a) Disappearance of CD4 lymphocyte circadian cycles in HIV infected patients: early even during asymptomatic infection. AIDS 2: 133–134PubMedCrossRefGoogle Scholar
  123. Martini E, Muller JY, Gastal C, Doinel C, Meyohas MC, Roquin H, Frottier J, Salmon C (1988b) Early anomalies of CD4 and CD20 lymphocyte cycles in human immunodeficiency virus. Presse Med 17: 2167–2168PubMedGoogle Scholar
  124. Mauer AM (1965) Diurnal variation of proliferative activity in the human bone marrow. Blood 26: 1–7PubMedGoogle Scholar
  125. Mehta J, Agarwal MB (1980) Cyclic oscillations in leukocyte count in chronic myeloid leukemia. Acta Haematol 63: 68–70PubMedCrossRefGoogle Scholar
  126. Mehta J, Malloy M, Lawson D, Lopez L (1989) Circadian variation in platelet alpha2-adrenoceptor affinity in normal subjects. Am J Cardiol 63: 1002–1005PubMedCrossRefGoogle Scholar
  127. Metcalf D (1986) Annotation. Haematopoietic growth factors now cloned. Br J Haematol 62: 409–412PubMedCrossRefGoogle Scholar
  128. Metcalf D, Stevens S (1972) Influence of age and antigenic stimulation on granulocyte and macrophage progenitor cells in the mouse spleen. Cell Tissue Kinet 5: 433–446PubMedGoogle Scholar
  129. Miescher PA, Pola W (1986) Haematological effects of non-narcotic analgesics. Drugs 32: 90–108PubMedCrossRefGoogle Scholar
  130. Migliaccio AR, Migliaccio G, Dale DC, Hammond WP (1990) Hematopoietic progenitors in cyclic neutropenia: effect of granulocyte colony-stimulating factor in vitro. Blood 75: 1951–1959PubMedGoogle Scholar
  131. Miyawaki T, Taga K, Nagaoki T, Seki H, Suzuki Y, Taniguchi N (1984) Circadian changes of T lymphocyte subsets in human peripheral blood. Clin Exp Immunol 55: 618–622PubMedGoogle Scholar
  132. Moldofsky H, Lue FA, Davidson JR, Gorczynski R (1989) Effects of sleep deprivation on human immune functions. FASEB J 3: 1972–1977PubMedGoogle Scholar
  133. Moldofsky H, Lue FA, Eisen J, Keyston E, Gorczynsky RM (1986) The relationship of interleukin-1 and immune functions to sleep in humans. Psychosom Med 48: 309–318PubMedGoogle Scholar
  134. Morley AA (1966) A neutrophil cycle in healthy individuals. Lancet 11: 1220CrossRefGoogle Scholar
  135. Morley AA, Baikie AG, Galton DAG (1967) Cyclic leukocytosis as evidence for retention of normal homeostatic control in chronic granulocytic leukemia. Lancet 11: 1320–1323CrossRefGoogle Scholar
  136. Morra L, Ponassi A, Caristo G, Bruzzi P, Zunino R, Parodi GB, Sacchetti C (1984) Comparison between diurnal changes and changes induced by hydrocortisone and epinephrine in circulating myeloid progenitor cells ( CFU-GM) in man. Biomed Pharmacother 38: 167–170Google Scholar
  137. Moskalik KG (1976) Diurnal rhythm of mitotic activity, DNA synthesis, and duration of mitoses in mouse bone marrow cells. Bull Exp Biol Med (USSR) 81: 594Google Scholar
  138. Muller JE, Stone PH, Turi SG, Rutherford JD, Czeisler CA, Parker C, Poole WK, Passamani E, Roberts R, Robertson T, Sobel BE, Willerson JT, Braunwald ESG (1985) Circadian variation in the frequency of onset of acute myocardial infarction. N Engl J Med 313: 1315–1322PubMedCrossRefGoogle Scholar
  139. Muller JE, Ludmer PL, Willich N, Tofler GH, Aylmer G, Klangos I, Stone PE (1987) Circadian variation in the frequency of sudden cardiac death. Circulation 75: 131–138PubMedCrossRefGoogle Scholar
  140. Nathan DG (1988) Hematologic diseases. Textbook of medicine. Saunders, PhiladelphiaGoogle Scholar
  141. Nelson W, Tong Y, Lee JK, Halberg F (1979) Methods for cosinor rhythmometry. Chronobiologia 6: 305–323PubMedGoogle Scholar
  142. Ogawa M (1993) Differentiation and proliferation of hematopoietic stem cells. Blood 81: 2844–2853PubMedGoogle Scholar
  143. Paukovits WR, Elgjo K, Laerum OD (1990a) Pentapeptide growth inhibitors. In: Sporn MB, Roberts AB (eds) Peptide growth factors and their receptors II. Springer, Heidelberg Berlin New York, pp 267–295CrossRefGoogle Scholar
  144. Paukovits WR, Guigon M, Binder KA, Hergl A, Laerum OD, Schulte-Hermann R (1990b) Prevention of hematotoxic side effects of cytostatic drugs in mice by a synthetic hemoregulatory peptide. Cancer Res 50: 328–332PubMedGoogle Scholar
  145. Perpoint B, Le Bousse-Kerdiles C, Clay D, Smadja-Joffe F, Depres-Brummer P, Laporte-Simitsidis S, Jasmin C, Lévi F (1995) In vitro chronopharmacology of recombinant mouse IL-3, mouse GM-CSF and human G-CSF on murine myeloid progenitor cells. Exp Haematol 23: 362–368Google Scholar
  146. Petralito A, Mangiafico RA, Gibiino S, Cuffari MA, Miano MF, Fiore CE (1982) Daily modifications of plasma fibrinogen, platelet aggregation, Howell’s time, PPT, TT and antithrombin III in normal subjects and in patients with vascular disease. Chronobiologia 9: 195–201Google Scholar
  147. Pisciotta AV (1969) Agranulocytosis induced by certain phenothiazine derivatives. JAMA 308: 1862–1868CrossRefGoogle Scholar
  148. Pizzarello DJ, Witcofski RL (1970) A possible link between diurnal variations in radiation sensitivity and cell division in bone marrow of male mice. Radiology 97: 165–167PubMedGoogle Scholar
  149. Rabkin SW, Mathewson FA, Tate RB (1980) Chronobiology of cardiac sudden death in men. JAMA 244: 1357–1358PubMedCrossRefGoogle Scholar
  150. Ramot B, Brok-Simoni F, Chweidan E, Askenazy YE (1976) Blood leukocyte enzymes. III. Diurnal rhythm of activity in isolated lymphocytes of normal subjects and chronic lymphatic leukemia patients. Br J Haematol 34: 79–85Google Scholar
  151. Reinberg A, Gervais P, Halberg F, Gaultier M, Roynette N, Abulker CH, Dupont J (1973) Mortalité des adultes: rythmes circadiens et circannuels dans un hopital parisien et en France. Nouv Presse Med 6: 289–292Google Scholar
  152. Reinberg A, Schuller E, Delasnerie N, Clench J, Helary M (1977) Rhythmes circadiens et circannuels des leucocytes, proteines totale, immunoglobulines A, G et M. Etude chez 9 adultes jeunes et sains. Nouv Presse Med 6: 3819–3823PubMedGoogle Scholar
  153. Reinberg A, Schuller E, Clench J, Smolensky MH (1980) Circadian and circannual rhythms of leukocytes, proteins and mmunoglobulins. Recent advances in the chronobiology of allergy and immunology. Pergamon, New York, pp 251–259Google Scholar
  154. Renbourn ET (1947) Variation, diurnal and over longer periods of time, in blood hemoglobin, hematocrit, plasma protein, erythrocyte sedimentation rate and blood chloride. J Hyg 45: 455CrossRefGoogle Scholar
  155. Ritchie AWS, Oswald I, Micklem HS, Boyd JE, Elton RA, Jazwinska E, James K (1983) Circadian variation of lymphocyte subpopulations: a study with monoclonal antibodies. Br Med J 286: 1773–1775CrossRefGoogle Scholar
  156. Rivard GE, Infante-Rivard C, Hoyoux C, Champagne J (1985) Maintenance chemotherapy for childhood acute lymphoblastic leukemia: better in the evening. Lancet 11: 1264–1266CrossRefGoogle Scholar
  157. Rivard GE, Infante-Rivard C, Dresse M-F, Leclerc J-M, Champagne J (1993) Circadian time-dependent response of childhood lymphoblastic leukemia to chemotherapy: a long-term follow-up study of survival. Chronobiol Int 10: 201–204PubMedCrossRefGoogle Scholar
  158. Rocker L, Feddersen HM, Hoffmeister H, Junge B (1980) Jahreszeitliche Veränder- ungen diagnostisch wichtiger Blutbestandteile. Klin Wochenschr 58: 769–778PubMedCrossRefGoogle Scholar
  159. Roemeling VR (1991) The therapeutic index of cytotoxic chemotherapy depends upon circadian drug timing. Ann NY Acad Sci 618: 292–311CrossRefGoogle Scholar
  160. Roitman B, Sothern RB, Halberg F, von Mayersbach H, Scheving LE, Haus E, Bartter FC, Delea C, Simpson H, Tavadia H, Fleming K, Hume P, Wilson C, Halberg E (1975) Circadian acrophases for total blood leukocytes counted on different continents. Chronobiologia 2 [Suppl 1]: 58Google Scholar
  161. Ross DD, Pollack A, Akman SA, Bachur NR (1980) Diurnal variation of circulating human myeloid progenitor cells. Exp Haematol 8: 954–960Google Scholar
  162. Rud F (1947) The eosinophil count in health and in mental disease. A biometrical study. Thesis, OsloGoogle Scholar
  163. Sabin FR, Cunningham RS, Doan CA, Kindwale JA (1927) The normal rhythm of white blood cells. Bull Johns Hopkins Hosp 37: 14–67Google Scholar
  164. Scheving LE (1959) Mitotic activity in the human epidermis. Anat Rec 135: 7–19PubMedCrossRefGoogle Scholar
  165. Scheving LE (1981) Circadian rhythms in cell proliferation: their importance when investigating the basic mechanism of normal versus abnormal growth. In: von Mayersbach H, Scheving L E, Pauly JE (eds) 11th international congress of anatomy, part C, biological rhythms in structure and function. Liss, New York, pp 39–79Google Scholar
  166. Scheving LE (1984) Chronobiology of cell proliferation in mammals: In: Rdmunds LE (ed) Cell cycle clocks. Implications for basic research and cancer chemotherapy. Cell cycle clocks. Dekker, New York, pp 455–499Google Scholar
  167. Scheving LE, Burns ER, Pauly JE, Tsai TH (1978) Circadian variation in cell division of the mouse alimentary tract, bone marrow, and corneal epithelium, and its possible implication in cell kinetics and cancer chemotherapy. Anat Res 191: 479–486CrossRefGoogle Scholar
  168. Scheving LE, Burns ER, Pauly JE, Halberg F (1980) Circadian bioperiodic response of mice bearing advanced L1210 leukemia to combination therapy with adriamycin and cyclophosphamide. Cancer Res 40: 1511–1515PubMedGoogle Scholar
  169. Scheving LE, Tsai TS, Feuers RJ, Scheving LA (1989) Cellular mechanisms involved in the action of anticancer drugs. In: Lemmer B (ed) Chronopharmacology: cellular and biochemical interactions. Dekker, New York, pp 317–369Google Scholar
  170. Scheving LE, Tsai TH, Scheving LA, Feuers RJ (1991) The potential of using the natural rhythmicity of cell proliferation in improving cancer chemotherapy in rodents. Temporal control of drug delivery. Ann NY Acad Sci 618: 182–227Google Scholar
  171. Scheving LE, Feuers RJ, Tsai TH, Scheving LA (1994) Experimental background for cancer chronotherapy. In: Hrushesky WHM (ed) Circadian cancer therapy. CRC Press. Boca Raton, pp 19–40Google Scholar
  172. Schofield R (1978) The relationship between the spleen colony-forming cell and the haematopoietic stem cell. A hypothesis. Blood Cells 4: 7–25PubMedGoogle Scholar
  173. Shadduck RK, Winkelstein A, Nunna NG (1972) Cyclic leukemia cell production in CML. Cancer 29: 399–401PubMedCrossRefGoogle Scholar
  174. Sharkis SJ, LoBue J, Alexander PJ, Rakowitz F, Weitz-Hamburger A, Gordon AS (1971) Circadian variations in mouse hematopoiesis. II. Sex differences in mitotic indices of femoral diaphyseal marrow cells. Proc Soc Exp Biol Med 138: 494–496Google Scholar
  175. Sharkis SJ, Palmer JD, Goodenough J, LoBue J, Gordon AS (1974) Daily variations of marrow and splenic erythropoiesis, pinna epidermal cell mitosis and physical activity in C57B 1 + 6J mice. Cell Tiss Kinet 7: 381–387Google Scholar
  176. Sharp GWG (1960) Reversal of diurnal leukocyte variations in man. J Endocrinol 21: 107–114CrossRefGoogle Scholar
  177. Signore A, Cugini P, Letizia C, Lucia P, Murano G, Pozilli P (1985) Study of the diurnal variation of human lymphocyte subsets. J Clin Lab Immunol 17: 25–28PubMedGoogle Scholar
  178. Simmons DJ, Loeffelman K Frier C, McCoy R, Friedman B, Melville S, Kahn AJ (1982) Circadian changes in the osteogenic competence of marrow stromal cells. In: Haus E, Kabat HF (eds) Chronobiology 1982–1983, Proceedings 15th International Conference on Chronobiology. S Karger, Basel, pp 37–42Google Scholar
  179. Sletvold 0 (1987) Circadian rhythms of peripheral blood leukocytes in aging mice. Mech Ageing Dev 39: 251PubMedCrossRefGoogle Scholar
  180. Sletvold O, Laerum OD (1988) Multipotent stem cell ( CFU-S) numbers and circadian variations in aging mice. Eur J Haematol 41: 230–236Google Scholar
  181. Sletvold O, Laerum OD, Ruse T (1988a) Age-related differences and circadian and seasonal variations in myelopoietic progenitor cell ( CFU-GM) numbers in mice. Eur J Haematol 40: 42–49Google Scholar
  182. Sletvold O, Laerum OD, Ruse T (1988b) Rhythmic variations of different hemopoietic cell lines and maturation stages in aging mice. Mech Aging Dev 42: 91–104PubMedCrossRefGoogle Scholar
  183. Sletvold O, Smaaland R, Laerum OD (1991) Cytometry and time-dependent variations in peripheral blood and bone marrow cells: a literature review and relevance to the chronotherapy of cancer. Chronobiol Int 8: 235–250PubMedCrossRefGoogle Scholar
  184. Smaaland R, Sothern RB (1994) Cytokinetic basis for circadian pharmacodynamics: circadian cytokinetics of murine and human bone marrow and human tumours. In: Hrushesky WJM (ed) Circadian cancer therapy. CRC Press, Boca Raton, pp 119–163Google Scholar
  185. Smaaland R, Lote KOS, Kamp D, Wiedemann G, Laerum OD (1989) Rhythmen in Knochenmark and Blut: Unterschiede wie Tag and Nacht. Dtsch Med Wochenschr 114: 845–849Google Scholar
  186. Smaaland R, Laerum OD, Lote K, Sletvold O, Sothern RB, Bjerknes R (199la) DNA synthesis in human bone marrow is circadian stage dependent. Blood 77: 2603–2611Google Scholar
  187. Smaaland R, Lote K, Sletvold O, Bjerknes R, Aakvaag A, Vollset SE, Laerum OD (1991b) Circadian stage dependent variation of cortisol related to DNA synthesis in human bone marrow. Ann N Y Acad Sci 618: 605–609CrossRefGoogle Scholar
  188. Smaaland R, Svardal AM, Lote K, Ueland PM, Laerum OD (1991c) Glutathione content in human bone marrow and circadian stage in relation to DNA synthesis. J Natl Cancer Inst 83: 1092–1098PubMedCrossRefGoogle Scholar
  189. Smaaland R, Abrahamsen JF, Svardal AM, Lote K, Ueland PM (1992a) DNA cell cycle distribution and glutathione ( GSH) content according to circadian stage in bone marrow of cancer patients. Br J Cancer 66: 39–45Google Scholar
  190. Smaaland R, Laerum OD, Sothern RB, Sletvold O, Bjerknes R, Lote K (1992b) Colony-forming units — granulocyte/macrophage and DNA synthesis of human bone marrow are circadian stage-dependent and show covariation. Blood 79: 2281–2287PubMedGoogle Scholar
  191. Smaaland R, Lote K, Sothern RB, Laerum OD (1993) DNA synthesis and ploidy in non-Hodgkin’s lymphomas demonstrate intra-patient variation depending on circadian stage of cell sampling. Cancer Res 53: 3129–3138PubMedGoogle Scholar
  192. Sothern RB, Nelson WL, Halberg F (1977) A circadian rhythm in susceptibility of mice to the anticancer drug, adriamycin. Proceedings of the XIIth international conference of the International Society of Chronobiology, pp 433–438Google Scholar
  193. Sothern RB, Smaaland R, Moore JG (1995) Circannual rhythm in DNA synthesis (S-Google Scholar
  194. phase) in healthy human bone marrow and rectal mucosa. FASEB 9:397–403 Spivak JL (1984) Normal hematopoiesis. The principles and practice of medicine.Google Scholar
  195. Appleton-Century-Crofts, NorwalkGoogle Scholar
  196. Stoney PJ, Halberg F, Simpson HW (1975) Circadian variation in colony-forming ability of presumable intact murine bone marrow cells. Chronobiologia 2: 319PubMedGoogle Scholar
  197. Suda T, Suda J, Ogawa M, Ihle JN (1985) Permissive role of interleukin 3 (IL-3) in proliferation and differentiation of multipotential hemopoietic progenitors in culture. J Cell Physiol 124: 182PubMedCrossRefGoogle Scholar
  198. Swoyer J, Irvine P, Sackett-Lundeen L, Conlin L, Lakatua D, Haus E (1989) Circadian hematologic time structure in the elderly. Chronobiol Int 6: 131–137PubMedCrossRefGoogle Scholar
  199. Swoyer J, Rhame F, Hrushesky WJM, Sackett-Lundeen L, Sothern R, Gale H, Haus E (1990) Circadian rhythm alterations in HIV infected patients. In: Hayes D, Pauly J, Reiter R (eds) Chronobiology: its role in clinical medicine, general biology, and agriculture. Wiley, New York, pp 437–449Google Scholar
  200. Swoyer JK, Sackett-Lundeen L, Haus E, Lakatua DJ, Taddeini L (1975) Circadian lymphocytic rhythms in clinically healthy subjects and in patients with hematologic malignancies. International congress on rhythmic functions in biological systems, pp 62–63Google Scholar
  201. Tavadia HB, Fleming KA, Hume PD, Simpson HW (1975) Circadian rhythmicity of human plasma cortisol and PHA-induced lymphocyte transformation. Clin Exp Immunol 22: 190–193PubMedGoogle Scholar
  202. Tofler GH, Brezinski D, Schafer AI, Czeisler CA, Rutherford JD, Willich SN, Gleason RE, Williams GH, Muller JE (1987) Concurrent morning increase in platelet aggregability and the risk of myocardial infarction and sudden cardiac death. N Engl J Med 316: 1514–1518PubMedCrossRefGoogle Scholar
  203. Touitou Y, Touitou C, Bogdan A, Chasselut J, Beck H, Reinberg A (1979) Circadian rhythms in blood variables in elderly subjects. In: Reinberg A, Halberg F (eds) Chronopharmacology: advances in biosciences. Pergamon, New York, pp 283–290Google Scholar
  204. Touitou Y, Touitou C, Bogdan A, Reinberg A, Auzeby A, Beck H, Guillet P (1986) Differences between young and elderly subjects in seasonal and circadian variations of total plasma proteins and blood volume as reflected by hemoglobin, hematocrit and erythrocyte counts. Clin Chem 32: 801–804PubMedGoogle Scholar
  205. Touitou Y, Lévi F, Bogdan A, Bruguerolle B (1990) Abnormal patterns of plasma cortisol in breast cancer patients. Annu Rev Chronopharmacol 7: 245–248Google Scholar
  206. Umemura T, Hirata J, Kaneko S, Nishimura JSM, Kozuru M, Ibayashi H (1986) Periodical appearance of erythropoietin-independent erythropoiesis in chronic myelogenous leukemia with cyclic oscillation. Acta Haematol 76: 230–234PubMedCrossRefGoogle Scholar
  207. Vacek A, Rotkovska D (1970) Circadian variations in the effect of X-irradiation on the haematopoietic stem cells of mice. Strahlentherapie 140: 302–306PubMedGoogle Scholar
  208. Varmus HE, Lowell CA (1994) Cancer genes and hematopoiesis. Blood 83: 5–9PubMedGoogle Scholar
  209. Verma DS, Fisher R, Spitzer G, Zander AR, McCredie KB, Dicke KA (1980) Diurnal changes in circulating myeloid progenitor cells in man. Am J Haematol 9: 185–192CrossRefGoogle Scholar
  210. Verma DS, Spitzer G, Zander AR, Dicke KA, McCredie KB (1982) Cyclic neutropenia and T lymphocyte suppression of granulopoiesis: abrogation of the neutropenic cycles by lithium carbonate. Leuk Res 6: 567–576PubMedCrossRefGoogle Scholar
  211. Vodopick H, Rupp EM, Edwards CL, Goswitz FA, Beauchamp JJ (1972) Spontaneous cyclic leukocytosis and thrombocytosis in chronic granulocytic leukaemia. N Engl J Med 286: 284–290PubMedCrossRefGoogle Scholar
  212. Volini IF, Greenspan I, Ehrlich L, Gonner JA, Felsenfeld O, Schwartz SO (1950) Hemopoietic changes during administration of chloramphenicol (chloromycetin). JAMA 142: 1333–1335CrossRefGoogle Scholar
  213. von Schulthess GV, Mazer NA (1982) Cyclic neutropenia (CN): a clue to the control of granulopoiesis. Blood 59: 27–37Google Scholar
  214. Wheldon TE, Kirk J, Finlay HM (1974) Cyclic granulopoiesis in chronic granulocytic leukemia: a simulation study. Blood 43: 379–385PubMedGoogle Scholar
  215. Wide L, Bengtsson C, Birgegard G (1989) Circadian rhythm of erythropoietin in human serum. Br J Haematol 72: 85–90PubMedCrossRefGoogle Scholar
  216. Williams LH, Udupa KB, Lipschitz DA (1986) Evaluation of the effect of age on hemopoiesis in young and old mice. Exp Haematol 14: 827–832Google Scholar
  217. Williams RM, Krause LJ, Dubey DP, Yunis EJ, Halberg F (1979) Circadian bioperiodicity in natural killer cell activity of human blood. Chronobiologia 6: 172Google Scholar
  218. Wintrobe MM (1981) Clinical hematology. Lead and Febiger, PhiladelphiaGoogle Scholar
  219. Wood PA, Sanchez de la Pena S, Hrushesky WJM (1990) Evidence for circadian de-Google Scholar
  220. pendency of recombinant human erythropoietin (rhEPO) response in the mouse.Google Scholar
  221. Annu Rev Chronopharmacol 7:173–176Google Scholar
  222. Young N, Mortimer P (1984) Viruses and bone marrow failure. Blood 63:729–737 Zagon IS, Wu Y, Mclaughlin PJ (1994) Opioid growth factor inhibits DNA synthesis inGoogle Scholar
  223. mouse tongue epithelium in a circadian rhythm-dependent manner. Am J PhysiolGoogle Scholar
  224. 267:.
    R645—R652Google Scholar
  225. Zinneman HH, Thompson M, Halberg F, Kaplan M, Haus E (1972) Circadian rhythms in urinary Bence-Jones protein excretion. Clin Res 20: 798Google Scholar
  226. Zinneman HH, Halberg F, Haus E, Kaplan M (1974) Circadian rhythms in urinary light chains, serum iron and other variables of multiple myeloma patient. Int J Chronobiol 2: 3–16PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • R. Smaaland

There are no affiliations available

Personalised recommendations