Skip to main content

Informationsvermittlung durch elektrische Erregung

  • Chapter
Physiologie des Menschen
  • 166 Accesses

Zusammenfassung

Zwei Systeme vermitteln Information im Organismus über größere Entfernungen: Hormone und Nerven. Das Prinzip der Freisetzung, der Verbreitung und der Wirkung von Hormonen ist oben angesprochen worden; es wird im Kap. 17 ausführlich dargestellt. Das schnellere und „individuellere“ System sind die Nerven. Deren Leistungen werden in den folgenden Kapiteln detailliert behandelt. Zunächst sollen hier die Reaktionsweisen der einzelnen Nervenzellen oder Neurone, dann die Prinzipien ihrer Interaktionen (Kap. 3) besprochen werden. Kennzeichnend für Nervenzellen ist, daß sie ihre Funktionen mit Hilfe von Änderungen des Membranpotentials bewerkstelligen, und wir müssen deshalb detaillierter auf die Zellpotentiale eingehen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

Weiterführende Lehr- und Handbücher

  1. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., Watson, J.D.: Molecular Biology of the cell. New York and London: Garland Publishing Inc. 1983

    Google Scholar 

  2. Cooke, I., Lipkin, M.: Cellular Neurophysiology, a source book. New York: Holt, Rinehart and Winston 1972 (Sammlung wichtiger Originalarbeiten)

    Google Scholar 

  3. Hille, B.: Ionic channels of excitable membranes. Sunderland, Mass.: Sinauer Assoc, 1984

    Google Scholar 

  4. Hoppe, W., Lohmann, W., Markl, H., Ziegler, H. (Hrsg.): Biophysik. Berlin, Heidelberg, New York: Springer 1984

    Google Scholar 

  5. Kandel, E.R., Schwartz, J.H. (Hrsg.): Principles of neural science. New York, Amsterdam, Oxford: Elsevier 1985

    Google Scholar 

  6. Kuffler, S.W., Nicholls, J.G., Martin, A.R.: From neuron to brain, Second Edition Sunderland, Mass., Sinauer Associates (1984)

    Google Scholar 

Einzel- und Übersichtsarbeiten

  1. Adrian, R.H.: The effect of internal and external potassium concentration on the membrane potential of frog muscle. J. Physiol. (Lond.) 133, 631 (1956)

    CAS  Google Scholar 

  2. Aldrich, R.W.: Voltage dependent gating of sodium channels: towards an integrating approach. Trends Neurosci. 9, 82–86 (1986)

    Article  CAS  Google Scholar 

  3. Armstrong, C.M.: Sodium channels und gating currents. Physiol. Rev. 61, 644–683 (1981)

    PubMed  CAS  Google Scholar 

  4. Connor, J.A., Stevens, C.F.: Inward and delayed outward membrane currents in isolated neural somata under voltage clamp. J. Physiol. (Lond.) 213, 1–19 (1971)

    CAS  Google Scholar 

  5. Gasser, H.S., Grundfest, H.: Axon diameters in relation to the spike dimension and the conduction velocity in mammalian A-fibers. Amer. J. Physiol. 127, 393 (1939)

    Google Scholar 

  6. Hamill, O.P., Marty, A., Neher, E., Sakmann, B., Sigworth, F.J.: Improved patch clamp techniques for high resolution current recording from cells and cell-free membrane patches. Pflügers Arch. 391, 85–100 (1981)

    Article  PubMed  CAS  Google Scholar 

  7. Heinemann, U., Lux, D.: Ionic changes during experimentally induced epilepsies. In: Progress in Epilepsy, R.C Rose, Ed.. London: Pitman Medical, p. 87–102 (1983)

    Google Scholar 

  8. Hille, B.: Ionic channels in excitable membranes. Biophys. J. 22, 283–294 (1978)

    Article  PubMed  CAS  Google Scholar 

  9. Hodgkin, A.L., Huxley, A.F.: The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J. Physiol. (Lond.) 116, 497 (1952)

    CAS  Google Scholar 

  10. Hodgkin, A.L., Huxley, A.F.: Quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.) 117, 500 (1952)

    CAS  Google Scholar 

  11. Hodgkin, A.L., Rushton, W.A.H.: The electrical constants of crustacean nerve fibre. Proc. roy. Soc. B 133, 444 (1946)

    Article  Google Scholar 

  12. Huxley, A.F., Stampfli, R.: Evidence for saltatory conduction in peripheral myelinated nerve fibres. J. Physiol. (Lond.) 108, 315 (1949)

    Google Scholar 

  13. Kameyama, M., Hofmann, F., Trautwein, W.: On the mechanism of β-adrenergic regulation of the Ca channel in the guinea-pig heart. Pflügers Arch. 405, 285–293 (1985)

    Article  PubMed  CAS  Google Scholar 

  14. Katz, B.: Electrical properties of the muscle fibre membrane. Proc. roy. Soc. B. 135, 506 (1948)

    Article  Google Scholar 

  15. Läuger, P.: Ionic channels with conformational substates. Biophys. J. 47, 581–590 (1985)

    Article  PubMed  Google Scholar 

  16. Lloyd, D.P.C., Chang, H.T.: Afferent fibres in muscle nerves. J. Neurophysiol. 11, 199 (1948)

    PubMed  CAS  Google Scholar 

  17. Meves, H.: Inactivation of the sodium permeability in squid giant nerve fibres. Prog. Biophys. Mol. Biol. 33, 207–230 (1978)

    Article  PubMed  CAS  Google Scholar 

  18. Neher, E., Sakmann, B., Steinbach, J.H.: The extracellular patch clamp: A method for resolving currents through individual open channels in biological membranes. Pflügers Arch. 375, 219–228 (1978)

    Article  PubMed  CAS  Google Scholar 

  19. Neumcke, B., Schwarz, W., Stämpfli, R.: Block of Na channels in the membrane of myelinated nerve by benzocaine. Pflügers Arch. 390, 230–236 (1981)

    Article  PubMed  CAS  Google Scholar 

  20. Neumcke, B., Stämpfli, R.: Heterogeneity of external surface charges near sodium channels in the nodal membrane of frog nerve. Pflügers Arch. 401, 125–131 (1984)

    Article  PubMed  CAS  Google Scholar 

  21. Noble, D.: Applications of Hodgkin-Huxley equations to excitable tissues. Physiol. Rev. 46, 1 (1966)

    PubMed  CAS  Google Scholar 

  22. Rang, H.P., Ritchie, J.M.: Electrogenic sodium pump in mammalian non-myelinated nerve fibres and its activation by various external cations. J. Physiol. (Lond.) 196, 183 (1968)

    CAS  Google Scholar 

  23. Ruch, T.C., Patton, H.D.: Physiology and Biophysics. Philadelphia: Saunders 1966

    Google Scholar 

  24. Schwarz, W., Pallade, P.T., Hille, B.: Local anesthetics: Effect of pH on use-dependent block of sodium channels in frog muscle. Biophys. J. 20, 343–368 (1977)

    Article  PubMed  CAS  Google Scholar 

  25. Sigworth, F.J., Neher, E.: Single Na+ channel currents observed in cultured red muscle cells. Nature (Lond.) 287, 447–449 (1980)

    Article  CAS  Google Scholar 

  26. Trautwein, W., Pelzer, D.: Voltage dependent gating of single calcium channels in cardiac cell membranes and its modulation by drugs. In: Calcium physiology, D. Marmé, Editor. Berlin, Heidelberg, New York, Toronto. Springer (im Druck) (1986)

    Google Scholar 

  27. Ulbricht, W.: Kinetics of drug action and equilibrium results at the node of Ranvier. Physiol. Rev. 61, 785–828 (1981)

    PubMed  CAS  Google Scholar 

  28. White, M.W., Bezanilla, B.: Activation of squid axon K+ channel. Ionic and gating current studies. J. Gen. Physiol. 85, 539–554, (1985)

    Article  PubMed  CAS  Google Scholar 

  29. Quandt, F.N., Yeh, J.Z., Narahashi, T.: All or none block of single Na+ channels by tetrodotoxin. Neurosci. Lett. 54, 77–83 (1985)

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dudel, J. (1987). Informationsvermittlung durch elektrische Erregung. In: Schmidt, R.F., Thews, G. (eds) Physiologie des Menschen. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09340-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09340-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-09341-2

  • Online ISBN: 978-3-662-09340-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics