Skip to main content

Part of the book series: Springer-Lehrbuch ((SLB))

  • 386 Accesses

Zusammenfassung

Der Herzinfarkt und der Schlaganfall sind häufig auftretende, lebensbedrohliche Erkrankungen. Beide Krankheitsbilder sind zurückzuführen auf Störungen der Gewebeatmung nach starker Einschränkung oder vollständiger Unterbrechung der Durchblutung im Myokard bzw. Gehirngewebe. Die zu beobachtenden Funktionsänderungen und Funktionsausfälle werden in beiden Organen in erster Linie durch die mangelhafte Sauerstoffversorgung der betroffenen Gewebebezirke verursacht. In vielen Fällen führt sie zum Tod des Patienten.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

Weiterführende Lehr- und Handbücher

  1. Bassenge E (1984) Physiologie der Koronardurchblutung. In: Roskamm H (ed) Koronarerkrankungen. Springer, Berlin Heidelberg New York (Handbuch der inneren Medizin vol 9/3), p. 1

    Google Scholar 

  2. Betz E (1981) Physiologie und Pathophysiologie der Gehirndurchblutung. In: Betz E, Huber P, Jacobsen HH, Nadjmi M, Ratzka M, Zülch KJ (eds) Röntgendiagnostik des Zentralnervensystems. Springer, Berlin Heidelberg New York (Handbuch der Medizinischen Radiologie, vol 14), P-194

    Google Scholar 

  3. Knox FG, Spielmann WS (1983) Renal circulation. American Physiological Society, Bethesda (Handbook of physiology, sect 2, vol 3, chap 6 ), p. 183

    Google Scholar 

  4. Lehninger AI (1982) Bioenergetik. Molekulare Grundlagen der biologischen Energieumwandlungen. 3rd edn. Thieme, Stuttgart

    Google Scholar 

  5. Linzbach AJ (1960) Pathologische Anatomie der Herzinsuffizienz. In: Schwiegk (ed) Herz, Kreislauf. 4th edn. Springer, Berlin Heidelberg New York (Handbuch der inneren Medizin, vol 9 ), p. 706

    Google Scholar 

  6. Poulsen H, Jacobsen E (1982) Die hyperbare Sauerstofftherapie. In: Benzer H, Frey R, Hügein W, Mayrhofer O (eds) Anaesthesiologie, Intensivmedizin und Reanimation, 5th edn. Springer, Berlin Heidelberg New York, p. 805

    Google Scholar 

  7. Schrör K (1984) Prostaglandine und verwandte Verbindungen. Bildung, Funktion und pharmakologische Beeinflussung. Thieme, Stuttgart

    Google Scholar 

  8. Sparks HV (1980) Effect of local metabolic factors on vascular smooth muscle. American Physiological Society, Bethesda (Handbook of physiology, sect 2, vol 2, chap 17 ), p. 475

    Google Scholar 

Einzel- und Übersichtsdarstellungen

  1. Acker H (1994) Mechanisms and meaning of cellular oxygen sensing in the organism. Respir Physiol 95a

    Google Scholar 

  2. Bassenge E, Heusch G (1990) Endothelial and neuro-humoral control of coronary blood flow in health and disease. Rev Physiol Biochem Pharmacol 116: 77

    PubMed  CAS  Google Scholar 

  3. Blomqvist G, Seitz RJ, Sjögren I, Hall-Din C, Stone-Elander S, Widen L, Solin O, Haaparanta M (1994) Regional cerebral oxidative and total glucose consumption during rest and activation studied with positron emission tomography. Acta Physiol Scand 151: 29

    Google Scholar 

  4. Burton R, Krebs HA (1953) The free-energy changes associated with the individual steps of the tricarboxylic acid cycle, glycolysis and alcohol fermentation and with hydrolysis of the pyrophosphate groups of adenosinetriphosphate. Biochem J 5494

    Google Scholar 

  5. Busija DW, Heistad DD (1984) Factors involved in the physiological regulation of the cerebral circulation. Rev Physiol Biochem Pharmacol 101: 161

    Article  PubMed  CAS  Google Scholar 

  6. Chance B, Oshino N, Sugano T, Mayevsky A (1973) Basic principles of tissue oxygen determination from mitochondrial signals. Adv Exp Med Biol 37A: 277

    Article  Google Scholar 

  7. Cohen JJ (1979) Is the function of the renal papilla coupled exclusively to an anaerobic pattern of metabolism. Am J Physiol 236: F423

    PubMed  CAS  Google Scholar 

  8. Connett RJ, Gayeski TEL Honig CR (1985) Energy sources in fully aerobic rest-work transitions: a new role for glycolysis. Am J Physiol 248: H922

    PubMed  CAS  Google Scholar 

  9. Daut J, Maier-Rudolph W, Van Beckerath N, Merke G, Günther K, Goedel-Meinen L (1990) Hypoxic dilation of coronary arteries is mediated by ATP-sensitive potassium channels. Science 247: 1341

    Article  PubMed  CAS  Google Scholar 

  10. Devous MD Sr, Stokely EM, Chehabi HH, Bonte FJ (1986) Normal distribution of regionale cerebral blood flow measurement by dynamic single-photon emission tomography. J Cereb Blood Flow Metabol 6: 95

    Article  Google Scholar 

  11. Feigl EO (1983) Coronary physiology. Physiol Rev 63: 1

    PubMed  CAS  Google Scholar 

  12. Frackowiak SJ, Lenzi GL, Jones T, Heather JD (1980) Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using X50 and positron emission tomography: theory, procedure and normal values. J Comput Tomogr 4: 727

    Article  CAS  Google Scholar 

  13. Furchgott RF (1990) Studies on endothelium-dependent vasodilation and the endothelium-derived relaxing factor. Acta Physiol Scand 139: 257

    Article  PubMed  CAS  Google Scholar 

  14. Gayeski TEL Connet RJ, Honig CR (1985) Oxygen transport in rest-work transition illustrates new functions for myoglobin. Am J Physiol 248: H914

    Google Scholar 

  15. Groebe K, Thews G (1990) A versatile model of steady state 02 supply to tissue. Application to skeletal muscle. Biophys J 57:485

    Google Scholar 

  16. Grote J, Thews G (1962) Die Bedingungen für die Sauerstoffversorgung des Herzmuskelgewebes. Pflügers Arch 276: 142

    Article  CAS  Google Scholar 

  17. Grote J, Zimmer K, Schubert R (1981) Effects of severe arterial hypocapnia on regional blood flow regulation, tissue POD and metabolism in the brain cortex of cats. Pflügers Arch 391: 195

    Article  PubMed  CAS  Google Scholar 

  18. Grote J, Schubert R (1982) Regulation of cerebral perfusion and POD in normal and edematous brain tissue. In: Loeppky JA, Riedesel ML (eds) Oxygen transport to human tissue. Elsevier-North Holland, Amsterdam, p. 169

    Google Scholar 

  19. Iadecola C, Pelligrino DA, Moskowitz MA, Lassen NA (1994) Nitric oxide synthase inhibition and cerebrovascular regulation. J Cereb Blood Flow Metabol 14: 175

    Article  CAS  Google Scholar 

  20. Jelkmann W (1992) Erythropoietin: structure, control of production and function. Physiol Rev 72: 449

    Google Scholar 

  21. Jöbsis FF (1977) Noninvasive, infrared monitoring of cerebral and myocardial oxygen dificiency and circulatory parameters. Science 198: 1264

    Article  PubMed  Google Scholar 

  22. Kramer K, Thurau K, Deetjen P (1960) Hämodynamik des Nierenmarks, 1. Mitteilung: Capilläre Passagezeit, Blutvolumen, Durchblutung, Gewebshämatokrit und 0 Verbrauch des Nierenmarks in situ. Pflügers Arch 270: 251

    Article  CAS  Google Scholar 

  23. Kreuzer F (1970) Facilitated diffusion of oxygen and its possible significance: a review. Respir Physiol 9: 1

    Article  PubMed  CAS  Google Scholar 

  24. Krogh A (1918/1919) The number and distribution of capillaries in muscles with calculations of the oxygen pressure head necessary for supplying the tissue. J Physiol (Lond) 52:409

    Google Scholar 

  25. Kunze K (1969) Das Sauerstoffdruckfeld im normalen und pathologisch veränderten Muskel. Springer, Berlin Heidelberg New York (Schriftenreihe Neurologie, vol 3 )

    Google Scholar 

  26. Kuschinsky W, Wahl M (1978) Local chemical and neuro-genic regulation of cerebral vascular resistance. Physiol Rev 58: 656

    PubMed  CAS  Google Scholar 

  27. Moncada S (1992) The L-arginine: nitric oxide pathway. Acta Physiol Scand 145: 201

    Article  PubMed  CAS  Google Scholar 

  28. Phelps ME, Mazziotta JC, Huang S-C (1982) Study of cerebral function with positron computed tomography. Cereb Blood Flow Metabol 2: 113

    Article  CAS  Google Scholar 

  29. Sakurada O, Kennedy C, Jehle J, Brown JD, Carbin G, Sokoloff L (1978) Measurement of local cerebral blood flow with iodo [~4CI antipyrine. Am J Physiol 234: H59

    Google Scholar 

  30. Schulz R, Rose J, Martin C, Brodde O-E, Heusch G (1993) Development of short-term myocardial hibernation. Its limitation by the severity of ischemia and inotropic stimulation. Circulation 88: 684

    Google Scholar 

  31. Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettrigrew KD, Sakurada O, Shinohara M (1977) The [’4C] deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anasthetized albino rat. J Neurochem 28: 897

    Article  PubMed  CAS  Google Scholar 

  32. Starlinger H, Lubbers DW (1973) Polarographic measurements of the oxygen pressure performed simultaneously with optical measurements of the redox state of the respiratory chain in suspensions of mitochondria under steady-state conditions at low oxygen tension. Pflügers Arch 341: 15

    Article  PubMed  CAS  Google Scholar 

  33. Strauer BE (1975) Dynamik, Koronardurchblutung und Sauerstoffverbrauch des normalen und kranken Herzens. Experimentell-pharmakologische Untersuchungen und Katheteruntersuchungen am Patienten. Karger, Basel

    Google Scholar 

  34. Thews G (1963) Der Transport der Atemgase. Klin Wochenschr 41: 120

    Article  PubMed  CAS  Google Scholar 

  35. Vanhoutte PM (1987) Endothelium and the control of vascular tissue. NIPS 2: 18

    Google Scholar 

  36. Wallace DC (1992) Diseases of the mitochondrial DNA. Annu Rev Biochem 61: 1175

    Article  PubMed  CAS  Google Scholar 

  37. Wilson DF, Gomi S, Pastuszko A, Greenberg JH (1993) Microvascular damage in the cortex of cat brain from middle cerebral artery occlusion and reperfusion. J Appl Physiol 74: 580

    PubMed  CAS  Google Scholar 

  38. Wyatt JS, Cope M, Delpy DT, Wray S, Reynolds EOR (1986) Quantitation of cerebral oxygenation and haemodynamics in sick newborn infants by near infrared spectroscopy. Lancet 1063

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grote, J. (1995). Gewebeatmung. In: Schmidt, R.F., Thews, G. (eds) Physiologie des Menschen. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09334-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09334-4_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-09335-1

  • Online ISBN: 978-3-662-09334-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics