Skip to main content

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 144))

  • 1025 Accesses

Abstract

There are a number of transition metal oxide superconductors listed with their transition temperatures in Table 3.1. However there exist only a single family of transition metal oxide superconductors with high transition temperatures and all of these have as a common element the existence of Cu-O planes. These materials are commonly called “the cuprates” and will be the focus of this chapter. While, no doubt, the other oxides represent interesting case studies in superconductivity they do not have either the same technological promise nor represent the intellectual challenge that do the cuprates. The key experimental facts and a comparison, principally with the results of exact diagonalization calculations, have been described in Chap. 2. Unfortunately, despite a deluge of articles, there is no real consensus on the form of an appropriate theory. The somewhat delicate task here is therefore to explain the elements that might make up a future widely accepted theory of cuprate superconductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Bardeen, L. N. Copper, J. R. Schrieffer: Phys. Rev. 108, 1175 (1957)

    Article  CAS  Google Scholar 

  2. See, e.g., M. Tinkham: Introduction to Superconductivity, McGraw-Hill, New York (1975)

    Google Scholar 

  3. See review: C. C. Tsuei, J. R. Kirtley: Rev. Mod. Phys. 72, 969 (2000)

    Google Scholar 

  4. See, e.g., A. A. Abrikosov: cond-mat/9912394 (1999)

    Google Scholar 

  5. See also e.g., J. Bouvier, J. Bok: Physica C217-225, 217 (1997);

    Google Scholar 

  6. J. I. Gersten, M. Weger: Phys. Rev. B65, 214530 (2002)

    Google Scholar 

  7. See references in, D. K. Morr, D. Pines: Phys. Rev. B61, R6483 (2000)

    Google Scholar 

  8. V. J. Emery, S. Kivelson: Nature 374, 434 (1995)

    Article  CAS  Google Scholar 

  9. P. W. Anderson: Science 235, 1196 (1987)

    Article  CAS  Google Scholar 

  10. S.-C. Zhang: Science 275, 1089 (1997)

    Article  CAS  Google Scholar 

  11. S. Uemura: Phys. Rev. Lett. 62, 2317 (1989)

    Article  CAS  Google Scholar 

  12. R. B. Laughlin: cond-mat/0209269 (2002); see also F. C. Zhang: condmat/0209272 (2002)

    Google Scholar 

  13. G. D. Mahan: Many-particle physics, Plenum Press, New York, (1981)

    Google Scholar 

  14. J. W. Negele, H. Orland: Quantum Many-Particle Systems, Addison-Wesley, Reading (1987)

    Google Scholar 

  15. S. E. Barnes: J. Phys. F6, 115; J. Phys. F6 1376 (1976); pg. 301, Proc. XIX Congress Ampere, North Holland (1977); J. Phys. F7 2637 (1977); J. de Physique, 39 C5–828 (1978); Advances in Physics 30 801–938 (1981); J. Phys. C.M., 6, 719, (1994)

    Google Scholar 

  16. See e.g., C. Kittel: Quantum theory of solids, Wiley, New York (1963)

    Google Scholar 

  17. S. Schmitt-Rink, C. M. Varma, A. E. Ruckenstein: Phys. Rev. Lett. 60, 2793 (1988)

    Article  Google Scholar 

  18. J.J. Sakurai: Modern quantum mechanics, Benjamin, Menlo Park, (1985)

    Google Scholar 

  19. J. Y. T. Wei, C. C. Tsuei, P. J. M. van Bentum, Q. Xiong, C. W. Chu, M. K. Wu: Phys. Rev. B57 3650 (1998)

    Article  CAS  Google Scholar 

  20. See, e.g., A. Messiah: Quantum mechanics, North Holland, Amsterdam (1961)

    Google Scholar 

  21. See discussion in: Z.-X. Shen, A. Lanzara S., Ishihara, N. Nagaosa: Phil. Mag. 82, 1349 (2002)

    Google Scholar 

  22. E. Dagotto, A. Moreo: Phys. Rev. B38, 5087 (1988)

    Article  Google Scholar 

  23. M. Gross, E. Sz,nches-Velasco, E. Siggia: Phys. Rev. B39, 2484;

    Google Scholar 

  24. M. Gross, E. Sz,nches-Velasco, E. Siggia: Phys. Rev. B40, 11328 (1989)

    Google Scholar 

  25. S. Liang, B. Doucot, P. W. Anderson: Phys. Rev. Lett. 61, 365 (1988)

    Article  CAS  Google Scholar 

  26. N. D. Mermin, H. Wagner: Phys. Rev. Lett. 22, 1133 (1966)

    Article  Google Scholar 

  27. D. Reznik, P. Bourges, H.F. Fong, L.P. Regnault, J. Bossy, C. Vettier, D.L. Milius, I.A. Aksay, B. Keimer: Phys. Rev. B53 R14741 (1996)

    Article  CAS  Google Scholar 

  28. R. R. P. Singh: Phys. Rev. B39, 9760 (1989)

    Article  Google Scholar 

  29. J. Appel: in Solid State Physics, 21, ed. F. Seitz, D. Turnbull, H. Ehrenreich ( Academic, New York, 1968 )

    Google Scholar 

  30. G. Martinez, P. Horsch: Phys. Rev. B44 317 (1991)

    Article  Google Scholar 

  31. See e.g., A. Khare: Fractional statistics and quantum field theory, World Scientific, Singapore (1997)

    Google Scholar 

  32. S. E. Barnes, S. Maekawa: J. Phys. Cond. Matter 14, L19 - L28 (2002)

    Article  CAS  Google Scholar 

  33. See: G. S. Canright, S. M. G.rvin, A. Brass: Phys. Rev. Lett. 63, 2291 (1989)

    Google Scholar 

  34. See: Y. Hasegawa, P. Lederer, T. M. Rice, P. B. Wiegmann: Phys. Rev. Lett. 63, 907 (1989)

    Google Scholar 

  35. See: S. E. Barnes: J. de Physique, 39 C5–828 (1978);

    Google Scholar 

  36. D. Vacaru, S. E. Barnes: J. Phys. C.M. 6, 719, 1994

    CAS  Google Scholar 

  37. F. C. Zhang, T. M. Rice: Phys. Rev. B37, 3759 (1988)

    Article  CAS  Google Scholar 

  38. Y. Isawa, S. Maekawa, H. Ebisawa: Physica 148B, 391 (1987)

    CAS  Google Scholar 

  39. G. Baskaran, Z. Zou, P. W. Anderson: Solid State Commun. 63, 973 (1987)

    Article  CAS  Google Scholar 

  40. G. Kotliar: Phys. Rev. 37, 3664 (1988))

    Google Scholar 

  41. See: F. C. Zhang, C. Gros, T. M. Rice, H. Shiba: Supercond. Sci. & Tech. 1, 36 (1988); T. K. Lee, S. F.ng: Phys. Rev. B38, 11 809 (1988)

    Google Scholar 

  42. F. C. Zhang, C. Gros, T. M. Rice, H. Shiba: Supercond. Sci. & Tech. 1, 36 (1988)

    Article  CAS  Google Scholar 

  43. A. Damascelli, Z.-X. Shen, Z. Hussain: Rev. Mod. Phys. 75, 473 (2003)

    Article  CAS  Google Scholar 

  44. Y. Suzumura, Y. Hasegawa, H. Fukuyama: J. Phys. Soc. Jpn. 57, 401 (1988)

    Article  Google Scholar 

  45. G. Kotliar, J. Liu: Phys. Rev. B38, 5142 (1988)

    Article  Google Scholar 

  46. See, e.g., P. A. Lee: Physica C317, 194 (1999); X. G. Wen, P. A. Lee: Phys. Rev. Lett. 76, 503 (1996)

    Google Scholar 

  47. See, e.g., recent survey: J. L. Talion, J. W. Loram, C. Panagopoulos: condmat/0211048 (2002)

    Google Scholar 

  48. C. E. Gough, M. S. Colcfough, E. M. Forgan, R. G. Jordan, M. Keene, C. M. Muirhead, A. I. M. Rae, N. Thomas, J. S. Abell, S. Sutton: Nature (London) 326, 855 (1987)

    Article  CAS  Google Scholar 

  49. T. Tohyama, S. Maekawa: Supercond. Sci. Technol. 13, R17 (2000)

    Article  CAS  Google Scholar 

  50. L. D. Faddeev, L.A. Takhtajan: Phys. Lett. 85A 375 (1981);

    Article  Google Scholar 

  51. L. D. Faddeev, L.A. Takhtajan: J. Sov. Math. 24, 241 (1984)

    Google Scholar 

  52. B. O. Wells, Z. -X. Shen, A. Matsuura, D. M. King, M. A. Kastner, M. Greven, R. J. Birgeneau: Phys. Rev. Lett. 74, 964 (1995);

    Article  CAS  Google Scholar 

  53. S. LaRosa, I. Vobornik, F. Zwick, H. Berger, M. Grioni, G. Margaritondo: Phys. Rev. B56, R525 (1997)

    Article  CAS  Google Scholar 

  54. R. B. Laughlin: Phys. Rev. Lett. 79, 1726 (1997)

    Article  CAS  Google Scholar 

  55. S. Weinberg: The Quantum Theory of Fields, Cambridge University Press (August 1996)

    Google Scholar 

  56. S. E. Barnes, S. Maekawa: Phys. Rev. B67, 224513 (2003)

    Google Scholar 

  57. Y. Nagaoka: Sol. State Commun. 3, 409 (1965);

    Article  CAS  Google Scholar 

  58. Y. Nagaoka: Phys. Rev. 147 392 (1966)

    Google Scholar 

  59. See, F. F. Balakirev, J. B. Betts, A. Miglioro, S. Ono, Y. Ando, S. Boebinger: Nature 424, 912 (2003);

    Article  Google Scholar 

  60. H. J. Kang, P. Dai, J. W. Lynn, M. Matsuura, J. R. Thompson, S.-C. Zhang, D. N. Argyriou, Y. Onose, Y. Tokura: Nature 423, 522 (2003) and references therein

    Google Scholar 

  61. E. Demler, S.-C. Zhang: Phys. Rev. Lett. 75, 4126 (1995)

    Article  CAS  Google Scholar 

  62. See, H. F. Fong, P. Bourges, Y. Sidis, L. P. Regnault, A. Ivanov, G. D. Gu, N. Koshizuka, B. Keimer: Nature 398 588 (1999) and references therein

    Google Scholar 

  63. S. Meixner, W. Hanke, E. Demler, S.-C. Zhang: Phys. Rev. Lett. 79, 4902 (1997)

    Article  CAS  Google Scholar 

  64. I. Bozovic, G. Logvenov, M. A. J. Verhoeven, P. Caputo, E. Goldobin, T. H. Geballe: Nature 422, 873 (2003)

    Article  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Barnes, S.E. (2004). Theory of Superconductivity. In: Physics of Transition Metal Oxides. Springer Series in Solid-State Sciences, vol 144. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09298-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09298-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05963-6

  • Online ISBN: 978-3-662-09298-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics