Skip to main content

A Rapid Hierarchical Radiosity Algorithm for Unoccluded Environments

  • Chapter
Photorealism in Computer Graphics

Part of the book series: EurographicSeminars ((FOCUS COMPUTER))

Abstract

This paper presents a linear-time radiosity algorithm for scenes containing large mutually unoccluded polygonal patches. It subdivides pairs of patches adaptively to build a hierarchical data structure with n elements at the leaves, and it encodes all the light transport between component polygonal elements. Given a required numerical precision, determined by the specified bounds for maximum solid angle F ε and minimum area A ε , our algorithm reduces the number of form factor calculations and interactions to 0(n) in the worst case and \(\sqrt {O\left( n \right)} \) in the best case. Standard techniques for shooting and gathering can then be used with the data structure. The best previous radiosity algorithms represented the element-to-element transport interactions with n 2 form factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. A. Apple. An efficient program for many-body simulation. SIAM J. Sci. Stat. Computing, 6 (1): 85–103, 1985

    Article  Google Scholar 

  2. D. R. Baum, H. E. Rushmeier, and J. M. Winget. Improving radiosity solution through the use of analytically determined form-factors. Computer Graphics, 23 (3): 335–344, July 1989.

    Article  Google Scholar 

  3. S.E. Chen. Incremental radiosity: an extension of progressive radiosity to an interactive image synthesis system. Computer Graphics, 24 (3), 1990.

    Google Scholar 

  4. M. Cohen and D. Greenberg. The hemi-cube, a radiosity solution for complex environments. Computer graphics, 19 (3): 31–40, 1985.

    Article  Google Scholar 

  5. M.F. Cohen, D.P. Greenberg, D.S. Immel, and P.J. Brock. An efficient radiosity approach for complex environments. IEEE Computer Graphics and Applications, 6 (2): 26–30, 1986.

    Article  Google Scholar 

  6. Michael F. Cohen, Shenchang E. Chen, John R. Wallace, and Donald P. Greenberg. A progessive refinement approach to fast radiosity image generation. Computer Graphics, 22 (4): 75–84, 1988.

    Article  Google Scholar 

  7. E. Esselink. Computing science Note KE5–1, University of Groningen, 1989.

    Google Scholar 

  8. D.K. Faddeev and V.N. Faddeeva. Computational methods of linear algebra. W.H. Freeman and Co., San Francisco, 1963.

    Google Scholar 

  9. C. M. Goral, D. P. Greenberg K. E. Torrance, and B. Battaile. Modeling the interaction of light between diffuse surfaces. Computer Graphics, 18 (3): 213–222, 1984.

    Article  Google Scholar 

  10. D.P. Greenberg. Introduction to radiosity. SIGGRAPH’90 Course Notes, 1989.

    Google Scholar 

  11. L. Greengard. The rapid evaluation of potential fields in particle systems. MIT Press, Cambridge, MA, 1988.

    MATH  Google Scholar 

  12. H.C. Hottel and A.F. Sarofim. Radiative transfer. McGraw-Hill, New York, 1967.

    Google Scholar 

  13. J.T. Kajiya. The rendering equation. Computer Graphics, 143–150, 1987.

    Google Scholar 

  14. G. Maxwell, M.J. Bailey, and V.W. Goldschmidt. Calculation of radiation configuration factor using ray tracing. Computer Aided Design, 18 (7): 371–379, 1986.

    Article  Google Scholar 

  15. R. Siegel and J. R. Howell. Thermal Radiation Heat Transfer. Hemisphere Publishing Corporation, New York, 1981.

    Google Scholar 

  16. F. Sillion and C. Puech. A general two-pass method integrating specular and diffuse reflection. Computer Graphics, 23 (3): 335–344, July 1989.

    Google Scholar 

  17. E.M Sparrow and R.D. Cess. Radiation heat transfer. Hemisphere Publishing Co., Washington, DC, 1978.

    Google Scholar 

  18. J. R. Wallace, K. A. Elmquist, and E. A. Haines. A ray tracing algorithm for progressive radiosity. Computer Graphics, 23 (3): 315–324, 1989.

    Article  Google Scholar 

  19. G. J. Ward, F. M. Rubinstein, and R. D. Clear. A ray tracing solution for diffuse interreflection. Computer Graphics, 22 (3): 85–92, 1988.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hanrahan, P., Salzman, D. (1992). A Rapid Hierarchical Radiosity Algorithm for Unoccluded Environments. In: Bouatouch, K., Bouville, C. (eds) Photorealism in Computer Graphics. EurographicSeminars. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09287-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09287-3_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08112-5

  • Online ISBN: 978-3-662-09287-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics