Selective Phosphodiesterase Inhibitors in the Treatment of Respiratory Disease

  • N. A. Jones
  • D. Spina
  • C. P. Page
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 161)

Abstract

At least 11 families of distinct phosphodiesterase (PDE) isoenzymes are known to regulate the function of many cells secondary to altering the intracellular levels of second messengers including cyclic 3′,5′-monophosphate (cyclic AMP) and cyclic 3′,5′-guanosine monophosphate (cyclic GMP). While there is a wide distribution of these enzymes throughout the body, advances in our understanding of the molecular aspects of PDEs and accurate determination of their cellular distribution has allowed development of isoenzyme-selective inhibitors as potential therapeutic agents. Cells thought to participate in the pathogenesis of inflammatory diseases, including asthma and chronic obstructive pulmonary disease (COPD), preferentially express PDE4. This finding has stimulated the search for highly selective inhibitors of these enzymes. Such drugs offer an exciting opportunity to selectively downregulate inflammatory cell function as a novel therapeutic approach in the treatment of airway disease.

Keywords

Phosphodiesterase (PDE) inhibitor Inflammation Asthma COPD 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alfonso, A., Estevez, M., Louzao, M. C., Vieytes, M. R., and Botana, L. M. Determination of phosphodiesterase activity in rat mast cells using the fluorescent cAMP analogue anthraniloyl cAMP. Cell Signal. 7 (5), 513–518. 1995PubMedCrossRefGoogle Scholar
  2. Aloui, R., Gormand, E, Prigent, A. E, PerrinFayolle, M., and Pacheco, Y. Increased respiratory burst and phosphodiesterase activity in alveolar eosinophils in chronic eosinophilic pneumonia. Eur.Respir.J. 9, 377–379. 1996PubMedCrossRefGoogle Scholar
  3. Alvarez, R., Sette, C., Yang, D., Eglen, R. M., Wilhelm, R., Shelton, E. R., and Conti, M. Activation and selective inhibition of a cyclic AMP-specific phosphodiesterase, PDE4D3. Mol.Pharmacol. 48 (4), 616–622. 1995PubMedGoogle Scholar
  4. Alves, A. C., Pires, A. L., Lagente, V., Cordeiro, R. S., Martins, M. A., and Silva, P. M. Effect of selective phosphodiesterase inhibitors on the rat eosinophil chemotactic response in vitro. Mem.Inst.Oswaldo Cruz 92 Suppl 2, 201–204. 1997CrossRefGoogle Scholar
  5. Alves, A. C., Pires, A. L. A., Cruz, H. N., Serra, M. F., Diaz, B. L., Cordeiro, R. S. B., Lagente, V, Martins, M. A., and de Silva, P. M. R. Selective inhibition of phosphodiesterase type IV suppresses the chemotactic responsiveness of rat eosinophils in vitro. Eur.J.Pharmacol. 312, 89–96. 1996PubMedCrossRefGoogle Scholar
  6. Anastassiou, E. D., Paliogianni, F., Balow, J. P., Yamada, H., and Boumpas, D. T. Prostaglandin E2 and other cyclic AMP-elevating agents modulate IL-2 and IL-2R alpha gene expression at multiple levels. J.Immunol. 148 (9), 2845–2852. 1992PubMedGoogle Scholar
  7. Archer, C. B., Morley, J., and MacDonald, D. M. Impaired lymphocyte cyclic adenosine monophosphate responses in atopic eczema. Br.J.Dermatol. 109 (5), 559–564. 1983PubMedCrossRefGoogle Scholar
  8. Au, B. T., Teixeira, M. M., Collins, P. D., and Williams, T. J. Effect of PDE4 inhibitors on zymosan-induced IL-8 release from human neutrophils: synergism with prostanoids and salbutamol. Br.J.Pharmacol. 123 (6), 1260–1266. 1998PubMedCrossRefGoogle Scholar
  9. Averill, L. E., Stein, R. L., and Kammer, G. M. Control of human T-lymphocyte interleukin-2 production by a cAMP- dependent pathway. Cell Immunol. 115 (1), 88–99. 1988PubMedCrossRefGoogle Scholar
  10. Bachelet, M., Vincent, D., Havet, N., Marrash, Chahla, Pradalier, A., Dry, J., and Vargaftig, B. B. Reduced responsiveness of adenylate cyclase in alveolar macrophages from patients with asthma. J.Allergy Clin.Immunol. 88 (3 Pt 1), 322–328. 1991PubMedCrossRefGoogle Scholar
  11. Baixeras, E., GarciaLozano, E., and Martinez, A. C. Decrease in cAMP levels promoted by CD48–CD2 interaction correlates with inhibition of apoptosis in B cells. Scand.J.Immunol. 43, 406–412. 1996PubMedCrossRefGoogle Scholar
  12. Baker, A. J. and Fuller, R. W. Effect of cyclic adenosine monophosphate, 5’-(N- ethylcarboxyamido)-adenosine and methylxanthines on the release of thromboxane and lysosomal enzymes from human alveolar macrophages and peripheral blood monocytes in vitro. Eur.J.Pharmacol. 211 (2), 157–161. 1992PubMedCrossRefGoogle Scholar
  13. Banner, K. H., Harbinson, P., Costello, J. E, and Page, C. P. Effect of PDE inhibitors on the proliferation of human peripheral blood mononuclear cells (HPBM) from mild asthmatics and normals. Am.J.Resp.Crit.Care Med. 155 (4). 1997Google Scholar
  14. Banner, K. H., Hoult, J. R., Taylor, M. N., Landells, L. J., and Page, C. P. Possible Contribution of Prostaglandin E2 to the antiproliferative effect of phosphodiesterase 4 inhibitors in human mononuclear cells. Biochem.Pharmacol. 58(9), 1487–1495.Google Scholar
  15. Banner, K. H., Roberts, N. M., and Page, C. P. Differential effect of phosphodiesterase 4 inhibitors on the proliferation of human peripheral blood mononuclear cells from normals and subjects with atopic dermatitis. Br.J.Pharmacol. 116, 3169–3174. 1995PubMedCrossRefGoogle Scholar
  16. Bardin, P. G., Dorward, M. A., Lampe, F. C., Franke, B., and Holgate, S. T. Effect of selective phosphodiesterase 3 inhibition on the early and late asthmatic responses to inhaled allergen. Br.J.Clin.Pharmacol. 45 (4), 387–391. 1998PubMedCrossRefGoogle Scholar
  17. Barnette, M. S., Bartus, J. O., Burman, M., Christensen, S. B., Cieslinski, L. B., Esser, K. M., Prabhakar, U. S., Rush, J. A., and Torphy, T. J. Association of the anti-inflammatory activity of phosphodiesterase 4 (PDE4) inhibitors with either inhibition of PDE4 catalytic activity or competition for [3H]rolipram binding. Biochem.Pharmacol. 51 (7), 949–956. 1996PubMedCrossRefGoogle Scholar
  18. Barnette, M. S., Christensen, S. B., Essayan, D. M., Grous, M., Prabhakar, U., Rush, J. A., Kagey, Sobotka A., and Torphy, T. J. SB 207499 (Ariflo), a potent and selective second-generation phosphodiesterase 4 inhibitor: in vitro anti-inflammatory actions. J.Pharmacol.Exp.Ther. 284 (1), 420–426. 1998PubMedGoogle Scholar
  19. Barnette, M. S., Grous, M., Cieslinski, L. B., Burman, M., Christensen, S. B., and Torphy, T. J. Inhibitors of phosphodiesterase IV (PDE IV) increase acid secretion in rabbit isolated gastric glands: correlation between function and interaction with a high-affinity rolipram binding site. J.Pharmacol.Exp.Ther. 273 (3), 1396–1402. 1995PubMedGoogle Scholar
  20. Beavo, J. A. Cyclic nucleotide phosphodiesterases: functional implications of multiple isoforms. Physiol.Rev. 75 (4), 725–748. 1995PubMedGoogle Scholar
  21. Betz, M. and Fox, B. S. Prostaglandin E2 inhibits production of Thl lymphokines but not of Th2 lymphokines. J.Immunol. 146 (1), 108–113. 1991PubMedGoogle Scholar
  22. Beusenberg, F. D., Van Amsterdam, J. G. C., Hoogsteden, H. C., Hekking, P. R. M., Brouwers, JW, Schermers, H. P., and Bonta, I. L. Stimulation of cyclic AMP production in human alveolar macrophages induced by inflammatory mediators and betasympathicomimetic. European Journal of Pharmacology-Environmental Toxicology Pharmacology Section 228 (1), 57–62. 1992CrossRefGoogle Scholar
  23. Billington, C. K., Joseph, S. K., Swan, C., Scott, M. G., Jobson, T. M., and Hall, I. P. Modulation of human airway smooth muscle proliferation by type 3 phosphodiesterase inhibition. Am.J.Physiol 276 (3 Pt 1), L412 - L419. 1999PubMedGoogle Scholar
  24. Blease, K., Burke-Gaffney A., and Hellewell, P. G. Modulation of cell adhesion molecule expression and function on human lung microvascular endothelial cells by inhibition of phosphodiesterases 3 and 4. Br.J.Pharmacol. 124 (1), 229–237. 1998PubMedCrossRefGoogle Scholar
  25. Bloom, T. J. and Beavo, J. A. Identification and tissue-specific expression of PDE7 phosphodiesterase splice variants. Proc.Natl.Acad.Sci.U.S.A 93 (24), 14188–14192. 1993CrossRefGoogle Scholar
  26. Bousquet, J., Jeffery, P. K., Busse, W. W., Johnson, M., and Vignola, A. M. Asthma—From bronchoconstriction to airways inflammation and remodeling. American Journal of Respiratory and Critical Care Medicine 161 (5), 1720–1745. 2000PubMedGoogle Scholar
  27. Brunnee, T., Engelstatter, R., Steinijans, V. W., and Kunkel, G. Bronchodilatory effect of inhaled zardaverine, a phosphodiesterase III and IV inhibitor, in patients with asthma. Eur.Respir.J. 5 (8), 982–985. 1992PubMedGoogle Scholar
  28. Burns, F., Stevens, P. A., and Pyne, N. J. The identification of apparently novel cyclic AMP and cyclic GMP phosphodiesterase activities in guinea-pig tracheal smooth muscle. Br.J.Pharmacol. 113 (1), 3–4. 1994PubMedCrossRefGoogle Scholar
  29. Busse, W. W. and Anderson, C. L. The granulocyte response to the phosphodiesterase inhibitor RO 20–1724 in asthma. J.Allergy Clin.Immunol. 67 (1), 70–74. 1981PubMedCrossRefGoogle Scholar
  30. Carpenter, D. O., Briggs, D. B., Knox, A. P., and Strominger, N. Excitation of area postrema neurones by transmitters, peptides and cyclic nucleotides. J.Neurophysiol. 59, 358–369. 1988PubMedGoogle Scholar
  31. Casnocha, S. A., Eskin, S. G., Hall, E. R., and McIntire, L. V. Permeability of human endothelial monolayers: effect of vasoactive agonists and cAMP. J.Appl.Physiol. 67 (5), 1997–2005. 1989PubMedGoogle Scholar
  32. Chan, S. C. and Hanifin, J. M. Differential inhibitor effects on cyclic adenosine mono-phosphate-phosphodiesterase isoforms in atopic and normal leukocytes [see comments]. J.Lab.Clin.Med. 121 (1), 44–51. 1993aPubMedGoogle Scholar
  33. Chan, S. C., Henderson, W. R., Jr., Shi-Hua, L., and Hanifin, J. M. Prostaglandin E2 control of T cell cytokine production is functionally related to the reduced lymphocyte proliferation in atopic dermatitis. J.Allergy Clin.Immunol. 97, 85–94. 1996PubMedCrossRefGoogle Scholar
  34. Chan, S. C., Reifsnyder, D., Beavo, J. A., and Hanifin, J. M. Immunochemical characterization of the distinct monocyte cyclic AMP-phosphodiesterase from patients with atopic dermatitis. J.Allergy Clin.Immunol. 91 (6), 1179–1188. 1993bPubMedCrossRefGoogle Scholar
  35. Cherry, J. A. and Davis, R. L. Cyclic AMP phosphodiesterases are localized in regions of the mouse brain associated with reinforcement, movement and affect. J.Comp.Neurol. 407, 287–301. 1999PubMedCrossRefGoogle Scholar
  36. Choi, Y. H., Ekholm, D., Krall, J., Ahmad, F., Degerman, E., Manganiello, V. C., and Movsesian, M. A. Identification of a novel isoform of the cyclic-nucleotide phosphodiesterase PDE3A expressed in vascular smooth-muscle myocytes. Biochem.J. 353 (Pt 1), 41–50. 2001PubMedCrossRefGoogle Scholar
  37. Christensen, S. B., Guider, A., Forster, C. J., Gleason, J. G., Bender, P. E., Karpinski, J. M., DeWolf, W. E. Jr, Barnette, M. S., Underwood, D. C., Griswold, D. E., Cieslinski, L. B., Burman, M., Bochnowicz, S., Osborn, R. R., Manning, C. D., Grous, M., Hillegas, L. M., Bartus, J. O., Ryan, M. D., Eggleston, D. S., Haltiwanger, R. C., and Torphy, T. J. 1,4-Cyclohexanecarboxylates: potent and selective inhibitors of phosphodiesterase 4 for the treatment of asthma. J.Med.Chem. 41 (6), 821–835. 1998Google Scholar
  38. Cohan, V. L., Showell, H. J., Fisher, D. A., Pazoles, C. J., Watson, J. W., Turner, C. R., and Cheng, J. B. In vitro pharmacology of the novel phosphodiesterase type 4 inhibitor, CP-80633. J.Pharmacol.Exp.Ther. 278, 1356–1361. 1996Google Scholar
  39. Columbo, M., Botana, L. M., Horowitz, E. M., Lichtenstein, L. M., and MacGlashan, D. W., Jr. Studies of the intracellular Ca2+ levels in human adult skin mast cells activated by the ligand for the human c-kit receptor and anti-IgE. Biochem.Pharmacol. 47 (12), 2137–2145. 1994PubMedCrossRefGoogle Scholar
  40. Columbo, M., Horowitz, E. M., McKenzie, White, Kagey, Sobotka, and Lichtenstein, L. M. Pharmacologic control of histamine release from human basophils induced by platelet-activating factor. Int.Arch.Allergy Immunol. 102 (4), 383–390. 1993PubMedCrossRefGoogle Scholar
  41. Cooper, K. D., Kang, K., Chan, S. C., and Hanifin, J. M. Phosphodiesterase inhibition by Ro 20–1724 reduces hyper-IgE synthesis by atopic dermatitis cells in vitro. J.Invest.Dermatol. 84 (6), 477–482. 1985PubMedCrossRefGoogle Scholar
  42. Coqueret, O., Boichot, E., and Lagente, V. Selective type IV phosphodiesterase inhibitors prevent IL-4-induced IgE production by human peripheral blood mononuclear cells. Clin.Exp.Allergy 27, 816–823. 1997PubMedCrossRefGoogle Scholar
  43. Coqueret, O., Dugas, B., Mencia, Huerta, J., and Braquet, P. Regulation of IgE production from human mononuclear cells by beta 2-adrenoceptor agonists [see comments]. Clin.Exp.Allergy 25 (4), 304–311. 1995PubMedCrossRefGoogle Scholar
  44. Cortijo, J., Bou, J., Beleta, J., Cardelus, I, Llenas, J., Morcillo, E., and Gristwood, R. W. Investigation into the role of phosphodiesterase IV in bronchorelaxation, including studies with human bronchus. Br.J.Pharmacol. 108 (2), 562–568. 1993PubMedCrossRefGoogle Scholar
  45. Cortijo, J., Villagrasa, V., Navarrete, C., Sanz, C., Berto, L., Michel, A., Bonnet, P. A., and Morcillo, E. J. Effects of SCA40 on human isolated bronchus and human polymorphonuclear leukocytes: comparison with rolipram, SKF94120 and levcromakalim. Br.J.Pharmacol. 119 (1), 99–106. 1996PubMedCrossRefGoogle Scholar
  46. Crocker, I. C., Ohia, S. E., Church, M. K., and Townley, R. G. Phosphodiesterase type 4 inhibitors, but not glucocorticoids, are more potent in suppression of cytokine secretion by mononuclear cells from atopic than nonatopic donors. J.Allergy Clin.Immunol. 102, 797–804. 1998PubMedCrossRefGoogle Scholar
  47. Crocker, I. C., Townley, R. G., and Khan, M. M. Phosphodiesterase inhibitors suppress proliferation of peripheral blood mononuclear cells and interleukin-4 and -5 secretion by human T-helper type 2 cells. Immunopharmacology 31, 223–235. 1996PubMedCrossRefGoogle Scholar
  48. de Boer, J., Philpott, A. J., van Amsterdam, R. G., Shahid, M., Zaagsma, J., and Nicholson, C. D. Human bronchial cyclic nucleotide phosphodiesterase isoenzymes: biochemical and pharmacological analysis using selective inhibitors. Br.J.Pharmacol. 106 (4), 1028–1034. 1992PubMedCrossRefGoogle Scholar
  49. Deisher, T. A., Garcia, I, and Harlan, J. M. Cytokine-induced adhesion molecule expression on human umbilical vein endothelial cells is not regulated by cyclic adenosine monophosphate accumulation. Life Sci. 53 (4), 365–370. 1993PubMedCrossRefGoogle Scholar
  50. Dent, G., Giembycz, M. A., Evans, P. M., Rabe, K. F., and Barnes, P. J. Suppression of human eosinophil respiratory burst and cyclic AMP hydrolysis by inhibitors of type IV phosphodiesterase: interaction with the beta adrenoceptor agonist albuterol. J.Pharmacol.Exp.Ther. 271 (3), 1167–1174. 1994PubMedGoogle Scholar
  51. Dent, G., Giembycz, M. A., Rabe, K. E, and Barnes, P. J. Inhibition of eosinophil cyclic nucleotide PDE activity and opsonised zymosan-stimulated respiratory burst by `type IV’- selective PDE inhibitors. Br.J.Pharmacol. 103 (2), 1339–1346. 1991PubMedCrossRefGoogle Scholar
  52. Dent, G., White, S. R., Tenor, H., Bodtke, K., Schudt, C., Leff, A. R., Magnussen, H., and Rabe, K. F. Cyclic nucleotide phosphodiesterases in human bronchial epithelial cells: characterization of isoenzymes and functional effects of PDE inhibitors. Pulm.Pharmacol.Ther. 11, 47–56. 1998PubMedCrossRefGoogle Scholar
  53. Derian, C. K., Santulli, R. J., Rao, P. E., Solomon, H. F., and Barrett, J. A. Inhibition of chemotactic peptide-induced neutrophil adhesion to vascular endothelium by cAMP modulators. J.Immunol. 154 (1), 308–317. 1995PubMedGoogle Scholar
  54. DiSanto, M. E., Glaser, K. B., and Heaslip, R. J. Phospholipid regulation of a cyclic AMP- specific phosphodiesterase (PDE4) from U937 cells. Cell Signal. 7 (8), 827–835. 1995PubMedCrossRefGoogle Scholar
  55. Dowling, R. B., Johnson, M., Cole, P. J., and Wilson, R. The effect of rolipram, a type IV phosphodiesterase inhibitor, on Pseudomonas aeruginosa infection of respiratory mucosa. Journal of Pharmacology Experimental Therapeutics 282 (3), 1565–1571. 1997Google Scholar
  56. Duplantier, A. J., Biggers, M. S., Chambers, R. J., Cheng, J. B., Cooper, K., Damon, D. B., Eggler, J. F., Kraus, K. G., Marfat, A., Masamune, H., Pillar, J. S., Shirley, J. T., Umland, J. P., and Watson, J. W. Biarylcarboxylic acids and amides: inhibition of phosphodiesterase type IV versus [3H]rolipram binding activity and their relationship to emesis in the ferret. J.Med.Chem. 39, 120–125. 1996PubMedCrossRefGoogle Scholar
  57. Eigler, A., Siegmund, B., Emmerich, U., Baumann, K. H., Hartmann, G., and Endres, S. Anti-inflammatory activities of cAMP-elevating agents: enhancement of IL-10 synthesis and concurrent suppression of TNF production. J.Leukoc.Biol. 63 (1), 101–107. 1998PubMedGoogle Scholar
  58. Engels, P., Fichtel, K., and Lubbert, H. Expression and regulation of human and rat phosphodiesterase type IV isogenes. FEBS Lett. 350 (2–3), 291–295. 1994PubMedCrossRefGoogle Scholar
  59. Essayan, D. M., Huang, S. K., Kagey, Sobotka, and Lichtenstein, L. M. Effects of nonselective and isozyme selective cyclic nucleotide phosphodiesterase inhibitors on antigen-induced cytokine gene expression in peripheral blood mononuclear cells. Am.J.Respir.Cell Mol.Biol. 13 (6), 692–702. 1995PubMedGoogle Scholar
  60. Essayan, D. M., Huang, S. K., Undem, B. J., Kagey, Sobotka, and Lichtenstein, L. M. Modulation of antigen-and mitogen-induced proliferative responses of peripheral blood mononuclear cells by nonselective and isozyme selective cyclic nucleotide phosphodiesterase inhibitors. J.Immunol. 153 (8), 3408–3416. 1994PubMedGoogle Scholar
  61. Essayan, D. M., Kagey-Sobotka, A., Lichtenstein, L. M., and Huang, S.-K. Differential regulation of human antigen-specific Thl and Th2 lymphocyte responses by isozyme selective cyclic nucleotide phosphodiesterase inhibitors. Journal of Pharmacology Experimental Therapeutics 282 (1), 505–512. 1997Google Scholar
  62. Ezeamuzie, C. I. Requirement of additional adenylate cyclase activation for the inhibition of human eosinophil degranulation by phosphodiesterase IV inhibitors. Eur.J.Pharmacol. 417(1–2), 11–18. 6–4–2001Google Scholar
  63. Ferretti, M. E., Spisani, S., Pareschi, M. C., Buzzi, M., Cavallaro, R., Traniello, S., Reali, E., Torrini, I, Paradisi, M. P., and Zecchini, G. P. Two new formylated peptides able to activate chemotaxis and respiratory burst selectively as tools for studying human neutrophil responses. Cell Signal. 6 (1), 91–101. 1994PubMedCrossRefGoogle Scholar
  64. Foster, R. W., Rakshi, K., Carpenter, J. R., and Small, R. C. Trials of the bronchodilator activity of the isoenzyme-selective phosphodiesterase inhibitor AH 21–132 in healthy volunteers during a methacholine challenge test. Br.J.Clin.Pharmacol. 34 (6), 527–534. 1992PubMedCrossRefGoogle Scholar
  65. Frossard, N., Landry, Y., Pauli, G., and Ruckstuhl, M. Effects of cyclic AMP- and cyclic GMP- phosphodiesterase inhibitors on immunological release of histamine and on lung contraction. Br.J.Pharmacol. 73 (4), 933–938. 1981PubMedCrossRefGoogle Scholar
  66. Fuhrmann, M., Jahn, H.-U., Seybold, J., Neurohr, C., Barnes, P. J., Hippenstiel, S., Kraemer, H. J., and Suttorp, N. Identification and function of cyclic nucleotide phosphodiesterase isoenzymes in airway epithelial cells. Am.J.Respir.Cell Mol.Biol. 20, 292–302. 1999PubMedGoogle Scholar
  67. Fujii, K., Kohrogi, H., Iwagoe, H., Hamamoto, J., Hirata, N., Goto, E., Kawano, O., Wada, K., Yamagata, S., and Ando, M. Novel phosphodiesterase 4 inhibitor T-440 reverses and prevents human bronchial contraction induced by allergen. Journal of Pharmacology Experimental Therapeutics 284 (1), 162–169. 1998Google Scholar
  68. Fujimura, M., Kamio, Y., Saito, M., Hashimoto, T., and Matsuda, T. Bronchodilator and bronchoprotective effects of cilostazol in humans in vivo. American Journal of Respiratory and Critical Care Medicine 151, 222–225. 1995PubMedGoogle Scholar
  69. Fuller, R. W. Control of mediator release from the human alveolar macrophage: Role of cyclic AMP. European Journal of Pharmacology 183 (2), 621. 1990CrossRefGoogle Scholar
  70. Fuller, R. W., O’Malley, G., Baker, A. J., and MacDermot, J. Human alveolar macrophage activation: inhibition by forskolin but not beta-adrenoceptor stimulation or phosphodiesterase inhibition. Pulm.Pharmacol. 1 (2), 101–106. 1988PubMedCrossRefGoogle Scholar
  71. Gantner, E, Gotz, C., Gekeler, V., Schudt, C., Wendel, A., and Hatzelmann, A. Phosphodiesterase profile of human B lymphocytes from normal and atopic donors and the effects of PDE inhibition on B cell proliferation. Br.J.Pharmacol. 123, 1031–1038. 1998PubMedCrossRefGoogle Scholar
  72. Gantner, F., Kupferschmidt, R., Schudt, C., Wendel, A., and Hatzelmann, A. In vitro differentiation of human monocytes to macrophages: Change of PDE profile and its relationship to suppression of tumour necrosis factor-alpha release by PDE inhibitors. British Journal of Pharmacology 121(2), 221–231. 1997aGoogle Scholar
  73. Gantner, E, Tenor, H., Gekeler, V., Schudt, C., Wendel, A., and Hatzelmann, A. Phosphodiesterase profiles of highly purified human peripheral blood leukocyte populations from normal and atopic individuals: a comparative study. J.Allergy Clin.Immunol. 100 (4), 527–535. 1997bPubMedCrossRefGoogle Scholar
  74. Giembycz, M. A. Phosphodiesterase 4 and tolerance to /32-adrenoceptor agonists in asthma. Trends Pharmacol.Sci. 17, 331–336. 1996PubMedCrossRefGoogle Scholar
  75. Giembycz, M. A., Corrigan, C. J., Seybold, J., Newton, R., and Barnes, P. J. Identification of cyclic AMP phosphodiesterases 3,4 and 7 in human CD4+ and CD8+ T-lymphocytes: role in regulating proliferation and the biosynthesis of interleukin-2. Br.J.Pharmacol. 118, 1945–1958. 1996PubMedCrossRefGoogle Scholar
  76. Giustina, T. A., Chan, S. C., Thiel, M. L., Baker, J. W., and Hanifin, J. M. Increased leukocyte sensitivity to phosphodiesterase inhibitors in atopic dermatitis: tachyphylaxis after theophylline therapy. J.Allergy Clin.Immunol. 74 (3 Pt 1), 252–257. 1984PubMedCrossRefGoogle Scholar
  77. Gleich, G. J. Mechanisms of eosinophil-associated inflammation. J.Allergy Clin.lmmunol. 105, 651–663. 2000CrossRefGoogle Scholar
  78. Greten, T. F., Sinha, B., Haslberger, C., Eigler, A., and Endres, S. Cicaprost and the type IV phosphodiesterase inhibitor, rolipram, synergize in suppression of tumor necrosis factor-alpha synthesis. Eur.J.Pharmacol. 299, 229–233. 1996PubMedCrossRefGoogle Scholar
  79. Grewe, S. R., Chan, S. C., and Hanifin, J. M. Elevated leukocyte cyclic AMP-phosphodiesterase in atopic disease: a possible mechanism for cyclic AMP-agonist hyporesponsiveness. J.Allergy Clin.Immunol. 70 (6), 452–457. 1982PubMedCrossRefGoogle Scholar
  80. Griswold, D. E., Webb, E. F., Breton, J., White, J. R., Marshall, P. J., and Torphy, T. J. Effect of selective phosphodiesterase type IV inhibitor, rolipram, on fluid and cellular phases of inflammatory response. Inflammation 17 (3), 333–344. 1993PubMedCrossRefGoogle Scholar
  81. Hadjokas, N. E., Crowley, J. J., Bayer, C. R., and Nielson, C. P. beta-Adrenergic regulation of the eosinophil respiratory burst as detected by lucigenin-dependent luminescence. J.Allergy Clin.Immunol. 95, 735–741. 1995PubMedCrossRefGoogle Scholar
  82. Hallsworth, M. P., Giembycz, M. A., Barnes, P. J., and Lee, T. H. Cyclic AMP-elevating agents prolong or inhibit eosinophil survival depending on prior exposure to GMCSF. British Journal of Pharmacology 117, 79–86. 1996PubMedCrossRefGoogle Scholar
  83. Hanifin, J. M. and Chan, S. C. Monocyte phosphodiesterase abnormalities and dysregulation of lymphocyte function in atopic dermatitis. J.Invest.Dermatol. 105, 84S - 88S. 1995PubMedCrossRefGoogle Scholar
  84. Hanifin, J. M., Chan, S. C., Cheng, J. B., Tofte, S. J., Henderson, W. R., Jr., Kirby, D. S., and Weiner, E. S. Type 4 phosphodiesterase inhibitors have clinical and in vitro anti-inflammatory effects in atopic dermatitis. J.Invest.Dermatol. 107, 51–56. 1996PubMedCrossRefGoogle Scholar
  85. Hansen, G., Jin, S., Umetsu, D. T., and Conti, M. Absence of muscarinic cholinergic airway responses in mice deficient in the cyclic nucleotide phosphodiesterase PDE4D. Proc Natl Acad Sci U S A 97 (12), 6751–6756. 2000PubMedCrossRefGoogle Scholar
  86. Harbinson, P. L., MacLeod, D., Hawksworth, R., O’Toole, S., Sullivan, P. J., Heath, P., Kilfeather, S., Page, C. P., Costello, J., Holgate, S. T., and Lee, T. H. The effect of a novel orally active selective PDE4 isoenzyme inhibitor (CDP840) on allergen-induced responses in asthmatic subjects. Eur.Respir.J. 10 (5), 1008–1014. 1997PubMedCrossRefGoogle Scholar
  87. Harris, A. L., Connell, M. J., Ferguson, E. W., Wallace, A. M., Gordon, R. J., Pagani, E. D., and Silver, P. J. Role of low Km cyclic AMP phosphodiesterase inhibition in tracheal relaxation and bronchodilation in the guinea pig. J.Pharmacol.Exp.Ther. 251 (1), 199–206. 1989PubMedGoogle Scholar
  88. Hatzelmann, A., Tenor, H., and Schudt, C. Differential effects of non-selective and selective phosphodiesterase inhibitors on human eosinophil functions. Br.J.Pharmacol. 114 (4), 821–831. 1995PubMedCrossRefGoogle Scholar
  89. Hersperger, R., Bray-French, K., Mazzoni, L., and Muller, T. Palladium-catalyzed cross-coupling reactions for the synthesis of 6, 8-disubstituted 1,7-naphthyridines: a novel class of potent and selective phosphodiesterase type 4D inhibitors. J.Med.Chem. 43 (4), 675–682. 2000Google Scholar
  90. Hichami, A., Boichot, E., Germain, N., Coqueret, O., and Lagente, V. Interactions between cAMP- and cGMP-dependent protein kinase inhibitors and phosphodiesterase IV inhibitors on arachidonate release from human monocytes. Life Sci. 59 (16), L255 - L261. 1996CrossRefGoogle Scholar
  91. Hichami, A., Boichot, E., Germain, N., Legrand, A., Moodley, I, and Lagente, V. Involvement of cyclic AMP in the effects of phosphodiesterase IV inhibitors on arachidonate release from mononuclear cells. Eur.J.Pharmacol. 291 (2), 91–97. 1995PubMedCrossRefGoogle Scholar
  92. Hilkens, C. M., Vermeulen, H., van Neerven, R. J., Snijdewint, E G., Wierenga, E. A., and Kapsenberg, M. L. Differential modulation of T helper type 1 (Thl) and T helper type 2 (Th2) cytokine secretion by prostaglandin E2 critically depends on interleukin-2. Eur.J.Immunol. 25 (1), 59–63. 1995PubMedCrossRefGoogle Scholar
  93. Hoffman, R., Baillie, G. S., MacKenzie, S. J., Yarwood, S. J., and Houslay, M. D. The MAP kinase ERK2 inhibits the cyclic AMP-specific phosphodiesterase HSPDE3D3 by phosphorylating it at Ser579. EMBO J. 18, 893–903. 1999CrossRefGoogle Scholar
  94. Houslay, M. D., Sullivan, M., and Bolger, G. B. The multienzyme PDE4 cyclic adenosine monophosphate-specific phosphodiesterase family: Intracellular targeting, regulation, and selective inhibition by compounds exerting anti-inflammatory and antidepressant actions. August, J. T., Anders, M. W., Murad, E, and Coyle, J. T. Advances in Pharmacology. 225–342. 1998. London, Academic PressGoogle Scholar
  95. Huang, R., Cioffi, J., Berg, K., London, R., Cidon, M., Maayani, S., and Mayer, L. B cell differentiation factor-induced B cell maturation: regulation via reduction in cAMP. Cell Immunol. 162 (1), 49–55. 1995PubMedCrossRefGoogle Scholar
  96. Hughes, B., Howat, D., Lisle, H., Holbrook, M., Tames, T., Gozzard, N., Blease, K., Hughes, P., Kingaby, R., Warrellow, G., Alexander, R., Head, J., Boyd, E., Eaton, M., Perry, M., Wales, M., Smith, B., Owens, R., Catterall, C., Lumb, S., Russell, A., Allen, R., Merriman, M., Bloxham, D., and Higgs, G. The inhibition of antigen-induced eosinophilia and bronchoconstriction by CDP840, a novel stereo-selective inhibitor of phosphodiesterase type 4. Br.J.Pharmacol. 118, 1183–1191. 1996PubMedCrossRefGoogle Scholar
  97. Ichimura, M. and Kase, H. A new cyclic nucleotide phosphodiesterase isozyme expressed in the T-lymphocyte cell lines. Biochem.Biophys.Res.Commun. 193 (3), 985–990. 1993PubMedCrossRefGoogle Scholar
  98. Jacobitz, S., McLaughlin, M. M., Livi, G. P., Burman, M., and Torphy, T. J. Mapping the functional domains of human recombinant phosphodiesterase 4A: structural requirements for catalytic activity and rolipram binding. Mol.Pharmacol. 50, 891–899. 1996PubMedGoogle Scholar
  99. Jeffery, P. K. Structural and inflammatory changes in COPD: a comparison with asthma. Thorax 53, 129–136. 1998PubMedCrossRefGoogle Scholar
  100. Jin, S. L., Richard, E J., Kuo, W. P., D’Ercole, A. J., and Conti, M. Impaired growth and fertility of cAMP-specific phosphodiesterase PDE4D-deficient mice. Proc Natl Acad Sci USA 96 (21), 11998–12003. 1999PubMedCrossRefGoogle Scholar
  101. Jonker, G. J., Tijhuis, G. J., and de Monchey, J. G. R. RP 73401 (a phosphodiesterase IV inhibitor) single does not prevent allergen induced bronchoconstriction during the early phase reaction in asthmatics. Eur.Respir.J. 9, 82 s. 1996Google Scholar
  102. Kammer, G. M. The adenylate cyclase-cAMP-protein kinase A pathway and regulation of the immune response. Immunol.Today 9 (7–8), 222–229. 1988PubMedCrossRefGoogle Scholar
  103. Kanda, N. and Watanabe, S. Gangliosides GD1b, GT1b, and GQ1b enhance IL-2 and IFNgamma production and suppress IL-4 and IL-5 production in phytohemagglutininstimulated human Tcells. J.Immunol. 166 (1), 72–80. 2001PubMedGoogle Scholar
  104. Kaneko, T., Alvarez, R., Ueki, I. F., and Nadel, J. A. Elevated intracellular cyclic AMP inhibits chemotaxis in human eosinophils. Cell Signal. 7 (5), 527–534. 1995PubMedCrossRefGoogle Scholar
  105. Kawasaki, A., Hoshino, K., Osaki, R., Mizushima, Y., and Yano, S. Effect of ibudilast: a novel antiasthmatic agent, on airway hypersensitivity in bronchial asthma. J.Asthma 29 (4), 245–252. 1992PubMedCrossRefGoogle Scholar
  106. Kelley, T. J., al Nakkash, L., and Drumm, M. L. CFTR-mediated chloride permeability is regulated by type III phosphodiesterases in airway epithelial cells. Am.J.Respir.Cell Mol.Biol. 13 (6), 657–664. 1995PubMedGoogle Scholar
  107. Kelly, J. R., Barnes, P. J., and Giembycz, M. A. Phosphodiesterase 4 in macrophages: relationship between cAMP accumulation, suppression of cAMP hydrolysis and inhibition of [3H]R-(-)-rolipram binding by selective inhibitors. Biochem.J. 318, 425–436. 1996PubMedGoogle Scholar
  108. Kemeny, D. M., Vyas, B., Vukmanovi-Stejic, M., Thomas, M. J., Nobel, A., Loh, L.-C., and O’Connor, B. J. CD8+ T cell subsets and chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine 160, S33 - S37. 1999PubMedGoogle Scholar
  109. Kleine, Tebbe, Wicht, L., Gagne, H., Friese, A., Schunack, W., Schudt, C., and Kunkel, G. Inhibition of IgE-mediated histamine release from human peripheral leukocytes by selective phosphodiesterase inhibitors. Agents Actions 36 (3–4), 200–206. 1992Google Scholar
  110. Knudsen, J. H., Kjaersgaard, E., and Christensen, N. J. Individual lymphocyte subset composition determines cAMP response to isoproterenol in mononuclear cell preparations from peripheral blood. Scand.J.Clin.Lab.Invest. 55, 9–14. 1995PubMedCrossRefGoogle Scholar
  111. Koeter, G. H., Meurs, H., Kauffman, H. F., and de Vries, K. The role of the adrenergic system in allergy and bronchial hyperreactivity. Eur.J.Respir.Dis.Suppl. 121, 72–78. 1982PubMedGoogle Scholar
  112. Komas, N., Lugnier, C., Andriantsitohaina, R., and Stoclet, J. C. Characterisation of cyclic nucleotide phosphodiesterases from rat mesenteric artery. Eur.J.Pharmacol. 208 (1), 85–87. 1991PubMedCrossRefGoogle Scholar
  113. Kung, T. T., Crawley, Y., Luo, B., Young, S., Kreutner, W., and Chapman, R. W. Inhibition of pulmonary eosinophilia and airway hyperresponsiveness in allergic mice by rolipram: involvement of endogenously released corticosterone and catecholamines. Br.J.Pharmacol. 130, 457–463. 2000PubMedCrossRefGoogle Scholar
  114. Laliberte, F., Han, Y., Govindaragan, A., Giroux, A., Liu, S., Bobechko, B., Lario, P., Bartlett, A., Gorseth, E., Gresser, M., and Huang, Z. Conformational difference between PDE4 apoenzyme and haloenzyme. Biochemistry 39, 6449–6458. 2000PubMedCrossRefGoogle Scholar
  115. Landells, L. J., Jensen, M. W., Spina, D., Donigi-Gale, D., Miller, A. J., Nichols, T., Smith, K., Rotshteyn, Y., Burch, R. M., Page, C., and O’Connor, B. J. Oral administration of the phosphodiesterase (PDE)4 inhibitor, V11294A inhibits ex-vivo agonist-induced cell activation. Eur Respir J 12 (Suppl 28). 2001aGoogle Scholar
  116. Landells, L. J., Spina, D., Souness, J. E., O’Connor, B. J., and Page, C. P. A biochemical and functional assessment of monocyte phosphodiesterase activity in healthy and asthmatic subjects. Pulm.Pharmacol.Ther. 13 (5), 231–239. 2000PubMedCrossRefGoogle Scholar
  117. Landells, L. J., Szilagy, C. M., Jones, N. A., Banner, K. H., Allen, J. M., Doherty, A., O’Connor, B. J., Spina, D., and Page, C. P. Identification and quantification of phosphodiesterase 4 subtypes in CD4 and CD8 lymphocytes from healthy and asthmatic subjects. Br.J Pharmacol. 133 (5), 722–729. 2001bPubMedCrossRefGoogle Scholar
  118. Lee, H. J., Koyano, Nakagawa, Naito, Y., Nishida, J., Arai, N., Arai, K., and Yokota, T. cAMP activates the IL-5 promoter synergistically with phorbol ester through the signaling pathway involving protein kinase A in mouse thymoma line EL-4. J.Immunol. 151 (11), 6135–6142. 1993PubMedGoogle Scholar
  119. Lenhard, J. M., Kassel, D. B., Rocque, W. J., Hamacher, L., Holmes, W. D., Patel, I, Hoffman, C., and Luther, M. Phosphorylation of a cAMP-specific phosphodiesterase (HSPDE4B2B) by mitogen-activated protein kinase. Biochem.J. 319, 751–758. 1996Google Scholar
  120. Lewis, G. M., Caccese, R. G., Heaslip, R. J., and Bansbach, C. C. Effects of rolipram and CI-930 on IL-2 mRNA transcription in human Jurkat cells. Agents Actions 39 Spec No, C89 - C92. 1993Google Scholar
  121. Li, L., Yee, C., and Beavo, J. A. CD3- and CD28-dependent induction of PDE7 required for T cell activation. Science 283 (5403), 848–849. 1999PubMedCrossRefGoogle Scholar
  122. Li, S. H., Chan, S. C., Kramer, S. M., and Hanifin, J. M. Modulation of leukocyte cyclic AMP phosphodiesterase activity by recombinant interferon-gamma: evidence for a differential effect on atopic monocytes. J.Interferon.Res. 13 (3), 197–202. 1993PubMedCrossRefGoogle Scholar
  123. Li, S. H., Chan, S. C., Toshitani, A., Leung, D. Y., and Hanifin, J. M. Synergistic effects of interleukin 4 and interferon-gamma on monocyte phosphodiesterase activity. J.Invest.Dermatol. 99 (1), 65–70. 1992PubMedCrossRefGoogle Scholar
  124. Lidington, E., Nohammer, C., Dominguez, M., Ferry, B., and Rose, M. L. Inhibition of the transendothelial migration of human lymphocytes but not monocytes by phosphodiesterase inhibitors. Clinical and Experimental Immunology 104, 66–71. 1996PubMedCrossRefGoogle Scholar
  125. Lindgren, S. and Andersson, K. E. Effects of selective phosphodiesterase inhibitors on isolated coronary, lung and renal arteries from man and rat. Acta Physiol Scand. 142 (1), 77–82. 1991PubMedCrossRefGoogle Scholar
  126. Lindgren, S., Andersson, K. E., Belfrage, P., Degerman, E., and Manganiello, V. C. Relaxant effects of the selective phosphodiesterase inhibitors milrinone and OPC 3911 on isolated human mesenteric vessels. Pharmacol.Toxicol. 64 (5), 440–445. 1989PubMedCrossRefGoogle Scholar
  127. Loughney, K., Hill, T. R., Florio, V. A., Uher, L., Rosman, G J, Wolda, S. L., Jones, B. A., Howard, M. L., McAllister–Lucas, L. M., Sonnenburg, W. K., Francis, S. H., Corbin, J. D., Beavo, J. A., and Ferguson, K. Isolation and characterization of cDNAs encoding PDE5A, a human cGMP– binding, cGMP–specific 3’,5’–cyclic nucleotide phosphodiesterase. Gene 216(1), 139–147. 17–8–1998Google Scholar
  128. Lugnier, C. and Komas, N. Modulation of vascular cyclic nucleotide phosphodiesterases by cyclic GMP: role in vasodilatation. Eur.Heart J. 14 Suppl I, 141–148. 1993Google Scholar
  129. Lugnier, C. and Schini, V. B. Characterization of cyclic nucleotide phosphodiesterases from cultured bovine aortic endothelial cells. Biochem.Pharmacol. 39 (1), 75–84. 1990PubMedCrossRefGoogle Scholar
  130. Lugnier, C., Schoeffter, P., Le Bec, A., Strouthou, E., and Stoclet, J. C. Selective inhibition of cyclic nucleotide phosphodiesterases of human, bovine and rat aorta. Biochem.Pharmacol. 35 (10), 1743–1751. 1986PubMedCrossRefGoogle Scholar
  131. MacKenzie, S. J., Baillie, G. S., McPhee, I., Bolger, G. B., and Houslay, M. D. ERK2 mitogen-activated protein kinase binding, phosphorylation, and regulation of the PDE4D cAMP-specific phosphodiesterases. J.Biol.Chem. 275, 16609–16617. 2000PubMedCrossRefGoogle Scholar
  132. Manning, C. D., Burman, M., Christensen, S. B., Cieslinski, L. B., Essayan, D. M., Grous, M., Torphy, T. J., and Barnette, M. S. Suppression of human inflammatory cell function by subtype-selective PDE4 inhibitors correlates with inhibition of PDE4A and PDE4B. British Journal of Pharmacology 128 (7), 1393–1398. 1999PubMedCrossRefGoogle Scholar
  133. Manning, C. D., McLaughlin, M. M., Livi, G. P., Cieslinski, L. B., Torphy, T. J., and Barnette, M. S. Prolonged beta adrenoceptor stimulation up-regulates cAMP phosphodiesterase activity in human monocytes by increasing mRNA and protein for phosphodiesterases 4A and 4B. J.Pharmacol.Exp.Ther. 276 (2), 810–818. 1996PubMedGoogle Scholar
  134. Marcoz, P., Prigent, A. E, Lagarde, M., and Nemoz, G. Modulation of rat thymocyte proliferative response through the inhibition of different cyclic nucleotide phosphodiesterase isoforms by means of selective inhibitors and cGMP-elevating agents. Mol.Pharmacol. 44 (5), 1027–1035. 1993PubMedGoogle Scholar
  135. Marukawa, S., Hatake, K., Wakabayashi, I, and Hishida, S. Vasorelaxant effects of oxpentifylline and theophylline on rat isolated aorta. J.Pharm.Pharmacol. 46 (5), 342–345. 1994PubMedCrossRefGoogle Scholar
  136. McLaughlin, M. M., Cieslinski, L. B., Burman, M., Torphy, T. J., and Livi, G. P. A low K(M), rolipram-sensitive, cAMP-specific phosphodiesterase from human brain. Cloning and expression of cDNA, biochemical characterization of recombinant protein, and tissue distribution of messenger-RNA. J.Biol.Chem. 268 (9), 6470–6476. 1993PubMedGoogle Scholar
  137. Mentz, F., Merle, Beral, Ouaaz, E, and Binet, J. L. Theophylline, a new inducer of apoptosis in B-CLL: role of cyclic nucleotides. Br.J.Haematol. 90 (4), 957–959. 1995PubMedCrossRefGoogle Scholar
  138. Meurs, H., Koeter, G. H., de Vries, K., and Kauffman, H. E The beta-adrenergic system and allergic bronchial asthma: changes in lymphocyte beta-adrenergic receptor number and adenylate cyclase activity after an allergen-induced asthmatic attack. J.Allergy Clin.Immunol. 70 (4), 272–280. 1982Google Scholar
  139. Mikawa, K., Akamatsu, H., Nishina, K., Shiga, M., Maekawa, N., Obara, H., and Niwa, Y. The effect of phosphodiesterase III inhibitors on human neutrophil function. Crit Care Med. 28 (4), 1001–1005. 2000PubMedCrossRefGoogle Scholar
  140. Miyahara, M., Ito, M., Itoh, H., Shiraishi, T., Isaka, N., Konishi, T., and Nakano, T. Isoenzymes of cyclic nucleotide phosphodiesterase in the human aorta: characterization and the effects of E4021. Eur.J.Pharmacol. 284 (1–2), 25–33. 1995PubMedCrossRefGoogle Scholar
  141. Miyamoto, K., Kurita, M., Sakai, R., Sanae, E, Wakusawa, S., and Takagi, K. Cyclic nucleotide phosphodiesterase isoenzymes in guinea-pig tracheal muscle and bronchorelaxation by alkylxanthines. Biochem.Pharmacol. 48 (6), 1219–1223. 1994PubMedCrossRefGoogle Scholar
  142. Molnar, Kimber, Yonno, L., Heaslip, R., and Weichman, B. Modulation of TNF alpha and IL-1 beta from endotoxin-stimulated monocytes by selective PDE isozyme inhibitors. Agents Actions 39 Spec No, C77 - C79. 1993Google Scholar
  143. Momose, T., Okubo, Y., Horie, S., Suzuki, J., Isobe, M., and Sekiguchi, M. Effects of intracellular cyclic AMP modulators on human eosinophil survival, degranulation and CDl lb expression. International Archives of Allergy Immunology 117 (2), 138–145. 1998CrossRefGoogle Scholar
  144. Moodley, I, Sotsios, Y., and Bertin, B. Modulation of oxazolone-induced hypersensitivity in mice by selective PDE inhibitors. Mediators of Inflammation 4, 112–116. 1995PubMedCrossRefGoogle Scholar
  145. Morandini, R., Ghanem, G., Portier-Lemarie, A., Robaye, B., Renaud, A., and Boeynaems, J. M. Action of cAMP on expression and release of adhesion molecules in human endothelial cells. Am.J.Physiol. 270, H807 - H816. 1996PubMedGoogle Scholar
  146. Muller, T., Engels, P., and Fozard, J. R. Subtypes of the type 4 cAMP phosphodiesterases: structure, regulation and selective inhibition. Trends Pharmacol.Sci. 17, 294–298. 1996PubMedCrossRefGoogle Scholar
  147. Munoz, E., Zubiaga, A. M., Merrow, M., Sauter, N. P., and Huber, B. T. Cholera toxin discriminates between T helper 1 and 2 cells in T cell receptor-mediated activation: role of cAMP in T cell proliferation. J.Exp.Med. 172 (1), 95–103. 1990PubMedCrossRefGoogle Scholar
  148. Nagai, H., Takeda, H., Iwama, T., Yamaguchi, S., and Mori, H. Studies on anti-allergic action of AH 21–132, a novel isozyme-selective phosphodiesterase inhibitor in airways. Jap.J.Pharmacol. 67, 149–156. 1995PubMedCrossRefGoogle Scholar
  149. Nell, H., Louw, C., Leichtl, S., Rathgeb, E, Neuhauser, M., and Bardin, P. G. Acute anti-inflammatory effect of the novel phosphodiesterase 4 inhibitor roflumilast on allergen challenge in asthmatics after a single dose. American Journal of Respiratory and Critical Care Medicine 161, A200. 2000Google Scholar
  150. Nemoz, G., Moueqqit, M., Prigent, A. F., and Pacheco, H. Isolation of similar rolipram-inhibitable cyclic-AMP-specific phosphodiesterases from rat-brain and heart. Eur.J.Biochem. 184 (3), 511–520. 1989PubMedCrossRefGoogle Scholar
  151. Nicholson, C. D., Shahid, M., Bruin, J., Barron, E., Spiers, I, de Boer, J., van Amsterdam, R. G., Zaagsma, J., Kelly, J. J., and Dent, G. Characterization of ORG 20241, a combined phosphodiesterase IV/III cyclic nucleotide phosphodiesterase inhibitor for asthma. J.Pharmacol.Exp.Ther. 274 (2), 678–687. 1995PubMedGoogle Scholar
  152. Nielson, C. P., Vestal, R. E., Sturm, R. J., and Heaslip, R. Effects of selective phosphodiesterase inhibitors on the polymorphonuclear leukocyte respiratory burst. J.Allergy Clin.Immunol. 86 (5), 801–808. 1990PubMedCrossRefGoogle Scholar
  153. Nieman, R. B., Fisher, B. D., Amit, O., and Dockhorn, R. J. SB 207499 (AriflowTM), a second-generation, selective oral phosphodiesterase type 4 (PDE4) inhibitor, attenuates exercise induced bronchoconstriction in patients with asthma. American Journal of Respiratory and Critical Care Medicine 157, A413. 1998Google Scholar
  154. Niwa, M., Hara, A., Kanamori, Y., Matsuno, H., Kozawa, O., Yoshimi, N., Mori, H., and Uematsu, T. Inhibition of tumor necrosis factor-alpha induced neutrophil apoptosis by cyclic AMP: involvement of caspase cascade. Eur.J.Pharmacol. 371(1), 59–67. 234–1999Google Scholar
  155. Novak, T. J. and Rothenberg, E. V. cAMP inhibits induction of interleukin 2 but not of interleukin 4 in Tcells. Proc.Natl.Acad.Sci.U.S.A. 87 (23), 9353–9357. 1990PubMedCrossRefGoogle Scholar
  156. O’Connell, J. C., McCallum, J. F., McPhee, I, Wakefield, J., Houslay, E. S., Wishart, W., Bolger, G., Frame, M., and Houslay, M. D. The SH3 domain of Src tyrosyl protein kinase interacts with the N-terminal splice region of the PDE4A cAMP-specific phosphodiesterase RPDE-6 (RNPDE4A5). Biochem.J. 318, 255–262. 1996PubMedGoogle Scholar
  157. Obernolte, R., Bhakta, S., Alvarez, R., Bach, C., Zuppan, P., Mulkins, M., Jarnagin, K., and Shelton, E. R. The cDNA of a human lymphocyte cyclic-AMP phosphodiesterase (PDE IV) reveals a multigene family. Gene 129 (2), 239–247. 1993PubMedCrossRefGoogle Scholar
  158. Obernolte, R., Ratzliff, J., Baecker, P. A., Daniels, D. V., Zuppan, P., Jarnagin, K., and Shelton, E. R. Multiple splice variants of phosphodiesterase PDE4C cloned from human lung and testis. Biochemica Biophysica Acta 1353, 287–297. 1997CrossRefGoogle Scholar
  159. Ottonello, L., Gonella, R., Dapino, P., Sacchetti, C., and Dallegri, F. Prostaglandin E2 inhibits apoptosis in human neutrophilic polymorphonuclear leukocytes: role of intracellular cyclic AMP levels. Exp.Hematol. 26 (9), 895–902. 1998PubMedGoogle Scholar
  160. Ottonello, L., Morone, P., Dapino, P., and Dallegri, F. Inhibitory effect of salmeterol on the respiratory burst of adherent human neutrophils. Clinical and Experimental Immunology 106 (1), 97–102. 1996PubMedCrossRefGoogle Scholar
  161. Owens, R. J., Caterall, C., Batty, D., Jappy, J., Russell, A., Smith, B., O’Connell, J., and Perry, M. J. Human phosphodiesterase 4A: characterization of full-length and truncated enzymes expressed in COS cells. Biochem.J. 326, 53–60. 1997PubMedGoogle Scholar
  162. Palmer, D. and Maurice, D. H. Dual expression and differential regulation of phosphodiesterase 3A and phosphodiesterase 3B in human vascular smooth muscle: implications for phosphodiesterase 3 inhibition in human cardiovascular tissues. Mol.Pharmacol. 58 (2), 247–252. 2000PubMedGoogle Scholar
  163. Pan, X, Arauz, E., Krzanowski, J. J., Fitzpatrick, D. F., and Polson, J. B. Synergistic interactions between selective pharmacological inhibitors of phosphodiesterase isozyme families PDE III and PDE IV to attenuate proliferation of rat vascular smooth muscle cells. Biochem.Pharmacol. 48 (4), 827–835. 1994PubMedCrossRefGoogle Scholar
  164. Parker, C. W., Kennedy, S., and Eisen, A. Z. Leukocyte and lymphocyte cyclic AMP responses in atopic eczema. J.Invest.Dermatol. 68 (5), 302–306. 1977PubMedCrossRefGoogle Scholar
  165. Paul, Eugene, Kolb, J. P., Calenda, A., Gordon, J., Kikutani, H., Kishimoto, T., Mencia, Huerta, J., Braquet, P., and Dugas, B. Functional interaction between beta 2-adrenoceptor agonists and interleukin-4 in the regulation of CD23 expression and release and IgE production in human. Mol.Immunol. 30 (2), 157–164. 1993CrossRefGoogle Scholar
  166. Paul, Eugene, Kolb, J. P., Damais, C., Abadie, A., Mencia, Huerta, J., Braquet, P., Bousquet, J., and Dugas, B. Beta 2-adrenoceptor agonists regulate the IL-4-induced phenotypical changes and IgE-dependent functions in normal human monocytes. J.Leukoc.Biol. 55 (3), 313–320. 1994Google Scholar
  167. Peachell, P. T., Undem, B. J., Schleimer, R. P., MacGlashan, D. W., Jr., Lichtenstein, L. M., Cieslinski, L. B., and Torphy, T. J. Preliminary identification and role of phosphodiesterase isozymes in human basophils. J.Immunol. 148 (8), 2503–2510. 1992PubMedGoogle Scholar
  168. Pene, J., Rousset, F., Briere, F., Chretien, I, Bonnefoy, J. Y., Spits, H., Yokota, T., Arai, N., Arai, K., and Banchereau, J. IgE production by normal human lymphocytes is induced by interleukin 4 and suppressed by interferons gamma and alpha and prostaglandin E2. Proc.Natl.Acad.Sci.U.S.A. 85 (18), 6880–6884. 1988PubMedCrossRefGoogle Scholar
  169. Pober, J. S., Slowik, M. R., De Luca, L. G., and Ritchie, A. J. Elevated cyclic AMP inhibits endothelial cell synthesis and expression of TNF-induced endothelial leukocyte adhesion molecule- 1, and vascular cell adhesion molecule-1, but not intercellular adhesion molecule-1. J.Immunol. 150 (11), 5114–5123. 1993PubMedGoogle Scholar
  170. Prabhakar, U., Lipshutz, D., Bartus, J. O., Slivjak, M. J., Smith, E. F., Lee, J. C., and Esser, K. M. Characterization of cAMP-dependent inhibition of LPS-induced TNF alpha production by rolipram, a specific phosphodiesterase IV (PDE IV) inhibitor. Int.J.Immunopharmacol. 16 (10), 805–816. 1994PubMedCrossRefGoogle Scholar
  171. Prigent, A. E, Fonlupt, P., Dubois, M., Nemoz, G., Timouyasse, L., PACHECO, H., Pacheco, Y., Biot, N., and Perrin, Fayolle M. Cyclic nucleotide phosphodiesterases and methyltransferases in purified lymphocytes, monocytes and polymorphonuclear leucocytes from healthy donors and asthmatic patients. Eur.J.Clin.Invest. 20 (3), 323–329. 1990PubMedCrossRefGoogle Scholar
  172. Qian, Y., Naline, E., Karlsson, J. A., Raeburn, D., and Advenier, C. Effects of rolipram and siguazodan on the human isolated bronchus and their interaction with isoprenaline and sodium nitroprusside. Br.J.Pharmacol. 109 (3), 774–778. 1993PubMedCrossRefGoogle Scholar
  173. Rabe, K. F., Magnussen, H., and Dent, G. Theophylline and selective PDE inhibitors as bronchodilators and smooth muscle relaxants. Eur.Respir.J. 8 (4), 637–642. 1995PubMedGoogle Scholar
  174. Rabe, K. F., Tenor, H., Dent, G., Schudt, C., Liebig, S., and Magnussen, H. Phosphodiesterase isozymes modulating inherent tone in human airways: identification and characterization. Am.J.Physiol. 264 (5 Pt 1), L458 - L464. 1993PubMedGoogle Scholar
  175. Rabe, K. F., Tenor, H., Dent, G., Schudt, C., Nakashima, M., and Magnussen, H. Identification of PDE isozymes in human pulmonary artery and effect of selective PDE inhibitors. Am.J.Physiol. 266 (5 Pt 1), L536 - L543. 1994PubMedGoogle Scholar
  176. Revel, L., Colombo, S., Ferrari, F., Folco, G., Rovati, L. C., and Makovec, E CR 2039, a new bis-(1H-tetrazol-5-yl)phenylbenzamide derivative with potential for the topical treatment of asthma. Eur.J.Pharmacol. 229 (1), 45–53. 1992PubMedCrossRefGoogle Scholar
  177. Robicsek, S. A., Blanchard, D. K., Djeu, J. Y., Krzanowski, J. J., Szentivanyi, A., and Poison, J. B. Multiple high-affinity cAMP-phosphodiesterases in human T- lymphocytes. Biochem.Pharmacol. 42 (4), 869–877. 1991PubMedCrossRefGoogle Scholar
  178. Rocque, W. J., Tian, G., Wiseman, J. S., Holmes, W. D., Zajac-Thompson, I., Willard, D. H., Patel, I. R., Wisely, G. B., Clay, W. C., Kadwell, S. H., Hoffman, C. R., and Luther, M. A. Human recombinant phosphodiesterase 4B2B binds (R)-rolipram at a single site with two affinities. Biochemistry 36, 14250–14261. 1997PubMedCrossRefGoogle Scholar
  179. Romagnani, S. The role of lymphocytes in allergic disease. J.Allergy Clin.Immunol. 105, 399–408. 2000PubMedCrossRefGoogle Scholar
  180. Roper, R. L., Brown, D. M., and Phipps, R. P. Prostaglandin E2 promotes B lymphocyte Ig isotype switching to IgE. J.Immunol. 154 (1), 162–170. 1995PubMedGoogle Scholar
  181. Roper, R. L., Conrad, D. H., Brown, D. M., Warner, G. L., and Phipps, R. P. Prostaglandin E2 promotes IL-4-induced IgE and IgG1 synthesis. J.Immunol. 145 (8), 2644–2651. 1990PubMedGoogle Scholar
  182. Rousseau, E., Gagnon, J., and Lugnier, C. Biochemical and pharmacological characterization of cyclic nucleotide phosphodiesterase in airway epithelium. Mol.Cell Biochem. 140 (2), 171–175. 1994PubMedCrossRefGoogle Scholar
  183. Sadhu, K., Hensley, K., Florio, V. A., and Wolda, S. L. Differential expression of the cyclic GMP-stimulated phosphodiesterase PDE2A in human venous and capillary endothelial cells. J.Histochem.Cytochem. 47 (7), 895–906. 1999PubMedCrossRefGoogle Scholar
  184. Saetta, M. Airway inflammation in chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine 160, S17 - S20. 1999PubMedGoogle Scholar
  185. Safko, M. J., Chan, S. C., Cooper, K. D., and Hanifin, J. M. Heterologous desensitization of leukocytes: a possible mechanism of beta adrenergic blockade in atopic dermatitis. J.Allergy Clin.Immunol. 68 (3), 218–225. 1981PubMedCrossRefGoogle Scholar
  186. Santamaria, L. F., Palacios, J. M., and Beleta, J. Inhibition of eotaxin-mediated human eosinophil activation and migration by the selective cyclic nucleotide phosphodiesterase type 4 inhibitor rolipram. Br.J.Pharmacol. 121 (6), 1150–1154. 1997PubMedCrossRefGoogle Scholar
  187. Sato, K., Stelzner, T. J., O’Brien, R. E, Weil, J. V., and Welsh, C. H. Pentoxifylline lessens the endotoxin-induced increase in albumin clearance across pulmonary artery endothelial monolayers with and without neutrophils. Am.J.Respir.Cell Mol.Biol. 4 (3), 219–227. 1991PubMedGoogle Scholar
  188. Sawai, T., Ikai, K., and Uehara, M. Cyclic adenosine monophosphate phosphodiesterase activity in peripheral blood mononuclear leukocytes from patients with atopic dermatitis: correlation with respiratory atopy. Br.J.Dermatol. 138, 846–848. 1998PubMedCrossRefGoogle Scholar
  189. Schade, E U. and Schudt, C. The specific type III and IV phosphodiesterase inhibitor zardaverine suppresses formation of tumor necrosis factor by macrophages. Eur.J.Pharmacol. 230 (1), 9–14. 1993PubMedCrossRefGoogle Scholar
  190. Schmidt, D., Watson, N., Morton, B. E., Dent, G., Magnussen, H., and Rabe, K. F. Effect of selective and non-selective phoshodiesterase inhibitors on allergen-induced contractions in passively sensitized human airways. Eur.Resp.J. 10 (Suppl 25), 31–45. 1997Google Scholar
  191. Schmidt, J., Hatzelmann, A., Fleissner, S., Heimann, Weitschat, Lindstaedt, R., and Szelenyi, I. Effect of phosphodiesterase inhibition on IL-4 and IL-5 production of the murine TH2-type T cell clone D10.G4.1. Immunopharmacology 30 (3), 191–198. 1995PubMedCrossRefGoogle Scholar
  192. Schneider, H. H., Schmiechen, R., Brezinski, M., and Seidler, J. Stereospecific binding of the antidepressant rolipram to brain protein structures. Eur.J.Pharmacol. 127 (1–2), 105–115. 1986PubMedCrossRefGoogle Scholar
  193. Schudt, C., Tenor, H., and Hatzelmann, A. PDE isoenzymes as targets for anti-asthma drugs. Eur.Respir.J. 8 (7), 1179–1183. 1995PubMedCrossRefGoogle Scholar
  194. Schudt, C., Winder, S., Eltze, M., Kilian, U., and Beume, R. Zardaverine: a cyclic AMP specific PDE III/IV inhibitor. Agents Actions Suppl. 34, 379–402. 199laGoogle Scholar
  195. Schudt, C., Winder, S., Forderkunz, S., Hatzelmann, A., and Ullrich, V. Influence of selective phosphodiesterase inhibitors on human neutrophil functions and levels of cAMP and Cai. Naunyn-Schmiedeberg’s Arch.Pharmacol. 344 (6), 682–690. 1991bPubMedGoogle Scholar
  196. Seldon, P. M., Barnes, P. J., Meja, K., and Giembycz, M. A. Suppression of lipopolysaccharide-induced tumor necrosis factor-alpha generation from human peripheral blood monocytes by inhibitors of phosphodiesterase 4: interaction with stimulants of adenylyl cyclase. Mol.Pharmacol. 48 (4), 747–757. 1995PubMedGoogle Scholar
  197. Sette, C. and Conti, M. Phosphorylation and activation of cAMP-specific phosphodiester- ase by the cAMP-dependent protein kinase. J.Biol.Chem. 271, 16526–16534. 1996PubMedCrossRefGoogle Scholar
  198. Sette, C., Vicini, E., and Conti, M. The rat PDE3/IVd phosphodiesterase gene codes for muliple proteins differentially activated by cAMP-dependent protein kinase. J.Biol.Chem. 269, 18271–18274. 1994PubMedGoogle Scholar
  199. Shahid, M., van Amsterdam, R. G., de Boer, J., ten Berge, R. E., Nicholson, C. D., and Zaagsma, J. The presence of five cyclic nucleotide phosphodiesterase isoenzyme activities in bovine tracheal smooth muscle and the functional effects of selective inhibitors. Br.J.Pharmacol. 104 (2), 471–477. 1991PubMedCrossRefGoogle Scholar
  200. Sharma, R. K. and Wang, J. H. Purification and characterization of bovine lung calmodulin-dependent cyclic nucleotide phosphodiesterase. An enzyme containing calmodulin as a subunit. J.Biol.Chem. 261 (30), 14160–14166. 1986PubMedGoogle Scholar
  201. Sheth, S. B., Chaganti, K., Bastepe, M., Ajuria, J., Brennan, K., Biradavolu, R., and Colman, R. W. Cyclic AMP phosphodiesterases in human lymphocytes. British Journal of Haematology 99 (4), 784–789. 1997PubMedCrossRefGoogle Scholar
  202. Shichijo, M., Shimizu, Y., Hiramatsu, K., Inagaki, N., Tagaki, K., and Nagai, H. Cyclic AMP-elevating agents inhibit mite-antigen-induced IL-4 and IL-13 release from basophil-enriched leukocyte preparation. Int.Arch.Allergy Immunol. 114 (4), 348–353. 1997PubMedCrossRefGoogle Scholar
  203. Siegmund, B., Eigler, A., Moeller, J., Greten, T. F., Hartmann, G., and Endres, S. Suppression of tumor necrosis factor–alpha production by interleukin–10 is enhanced by cAMP–elevating agents. Eur.J.Pharmacol. 321(2), 231–239. 26–2–1997Google Scholar
  204. Silver, R J., Hamel, L. T., Perrone, M. H., Bentley, R. G., Bushover, C. R., and Evans, D. B. Differential pharmacologic sensitivity of cyclic nucleotide phosphodiesterase isozymes isolated from cardiac muscle, arterial and airway smooth muscle. Eur.J.Pharmacol. 150 (1–2), 85–94. 1988PubMedCrossRefGoogle Scholar
  205. Sinha, B., Semmler, J., Eisenhut, T., Eigler, A., and Endres, S. Enhanced tumor necrosis factor suppression and cyclic adenosine monophosphate accumulation by combination of phosphodiesterase inhibitors and prostanoids. Eur.J.Immunol. 25 (1), 147–153. 1995PubMedCrossRefGoogle Scholar
  206. Snijdewint, F. G., Kalinski, R, Wierenga, E. A., Bos, J. D., and Kapsenberg, M. L. Prostaglandin E2 differentially modulates cytokine secretion profiles of human T helper lymphocytes. J.Immunol. 150 (12), 5321–5329. 1993PubMedGoogle Scholar
  207. Soderling, S. H. and Beavo, J. A. Regulation of cAMP and cGMP signaling: new phosphodiesterases and new functions. Curr.Opin.Cell Biol. 12, 174–179. 2000PubMedCrossRefGoogle Scholar
  208. Sommer, N., Loschmann, R A., Northoff, G. H., Weller, M., Steinbrecher, A., Steinbach, J. R, Lichtenfels, R., Meyermann, R., Riethmuller, A., and Fontana, A. The antidepressant rolipram suppresses cytokine production and prevents autoimmune encephalomyelitis [see comments]. Nat.Med. 1 (3), 244–248. 1995PubMedCrossRefGoogle Scholar
  209. Souness, J. E., Diocee, B. K., Martin, W., and Moodie, S. A. Pig aortic endothelial-cell cyclic nucleotide phosphodiesterases. Use of phosphodiesterase inhibitors to evaluate their roles in regulating cyclic nucleotide levels in intact cells. Biochem.J. 266 (1), 127–132. 1990PubMedGoogle Scholar
  210. Souness, J. E., Griffin, M., Maslen, C., Ebsworth, K, Scott, L. C., Pollock, K., Palfreyman, M. N, and Karlsson, J.-A. Evidence that cyclic AMP phosphodiesterase inhibitors suppress TNF-alpha generation from human monocytes by interacting with a `low affinity’ phosphodiesterase 4 conformer. Br.J.Pharmacol. 118, 649–658. 1996aPubMedCrossRefGoogle Scholar
  211. Souness, J. E., Griffin, M., Maslen, C., Ebsworth, K., Scott, L. C., Pollock, K., Palfreyman, M. N., and Karlsson, J. A. Evidence that cyclic AMP phosphodiesterase inhibitors suppress TNFa generation from human monocytes by interacting with a low-affinity’ phosphodiesterase 4 conformer. Br.J.Pharmacol. 118, 649–658. 1996bPubMedCrossRefGoogle Scholar
  212. Souness, J. E., Houghton, C., Sardar, N., and Withnall, M. T. Evidence that cyclic AMP phosphodiesterase inhibitors suppress interleukin-2 release from murine splenocytes by interacting with a low-affinity’ phosphodiesterase 4 conformer. British Journal of Pharmacology 121 (4), 743–750. 1997PubMedCrossRefGoogle Scholar
  213. Souness, J. E., Maslen, C., Webber, S., Foster, M., Raeburn, D., Palfreyman, M. N., Ashton, M. J., and Karlsson, J. A. Suppression of eosinophil function by RP 73401, a potent and selective inhibitor of cyclic AMP-specific phosphodiesterase: comparison with rolipram. Br.J.Pharmacol. 115 (1), 39–46. 1995PubMedCrossRefGoogle Scholar
  214. Souness, J. E. and Scott, L. C. Stereospecificity of rolipram actions on eosinophil cyclic AMP- specific phosphodiesterase. Biochem.J. 291 (Pt 2), 389–395. 1993PubMedGoogle Scholar
  215. Souness, J. E., Villamil, M. E., Scott, L. C., Tomkinson, A., Giembycz, M. A., and Raeburn, D. Possible role of cyclic AMP phosphodiesterases in the actions of ibudilast on eosinophil thromboxane generation and airways smooth muscle tone. Br.J.Pharmacol. 111 (4), 1081–1088. 1994PubMedCrossRefGoogle Scholar
  216. Spina, D., Harrison, S., and Page, C. R Regulation by phosphodiesterase isoenzymes of non-adrenergic non-cholinergic contraction in guinea-pig isolated main bronchus. Br.J.Pharmacol. 116 (4), 2334–2340. 1995PubMedCrossRefGoogle Scholar
  217. Stawiski, M. A., Rusin, L. J., Burns, T. L., Weinstein, G. D., and Voorhees, J. J. Ro 20–1724: an agent that significantly improves psoriatic lesions in double-blind clinical trials. J.Invest.Dermatol. 73 (4), 261–263. 1979PubMedCrossRefGoogle Scholar
  218. Stelzner, T. J., Weil, J. V., and O’Brien, R. F. Role of cyclic adenosine monophosphate in the induction of endothelial barrier properties. J.Cell Physiol. 139 (1), 157–166. 1989PubMedCrossRefGoogle Scholar
  219. Stief, C. G. Phosphodiesterase inhibitors in the treatment of erectile dysfunction. Drugs Of Today 36 (2–3), 93–99. 2000PubMedGoogle Scholar
  220. Sullivan, P., Bekir, S., Jaffar, Z., Page, C., Jeffery, P., and Costello, J. Anti-inflammatory effects of low-dose oral theophylline in atopic asthma [published erratum appears in Lancet 1994 Jun 11; 343(8911):15121. Lancet 343 (8904), 1006–1008. 1994PubMedCrossRefGoogle Scholar
  221. Suttorp, N., Ehreiser, P., Hippenstiel, S., Fuhrmann, M., Krull, M., Tenor, H., and Schudt, C. Hyperpermeability of pulmonary endothelial monolayer: protective role of phosphodiesterase isoenzymes 3 and 4. Lung 174 (3), 181–194. 1996PubMedGoogle Scholar
  222. Suttorp, N., Weber, U., Welsch, T., and Schudt, C. Role of phosphodiesterases in the regu- lation of endothelial permeability in vitro. J.Clin.Invest. 91 (4), 1421–1428. 1993PubMedCrossRefGoogle Scholar
  223. Takahashi, M., Terwilliger, R., Lane, C., Mezes, P. S., Conti, M., and Duman, R. S. Chronic antidepressant administration increases the expression of cAMP-specific phosphodiesterase 4A and 4B isoforms. J.Neurosci. 19, 610–618. 1999PubMedGoogle Scholar
  224. Takahashi, S., Oida, K., Fujiwara, R., Maeda, H., Hayashi, S., Takai, H., Tamai, T., Nakai, T., and Miyabo, S. Effect of cilostazol, a cyclic AMP phosphodiesterase inhibitor, on the proliferation of rat aortic smooth muscle cells in culture. J.Cardiovasc.Pharmacol. 20 (6), 900–906. 1992PubMedCrossRefGoogle Scholar
  225. Tenor, H., Hatzelmann, A., Church, M. K., Schudt, C., and Shute, J. K. Effects of theophylline and rolipram on leukotriene C4 (LTC4) synthesis and chemotaxis of human eosinophils from normal and atopic subjects. Br.J.Pharmacol. 118, 1727–1735. 1996PubMedCrossRefGoogle Scholar
  226. Tenor, H., Hatzelmann, A., Kupferschmidt, R., Stanciu, L., Djukanovic, R., Schudt, C., Wendel, A., Church, M. K., and Shute, J. K. Cyclic nucleotide phosphodiesterase isoenzyme activities in human alveolar macrophages. Clin.Exp.Allergy 25 (7), 625–633. 1995aPubMedCrossRefGoogle Scholar
  227. Tenor, H., Staniciu, L., Schudt, C., Hatzelmann, A., Wendel, A., Djukanovic, R., Church, M. K., and Shute, J. K. Cyclic nucleotide phosphodiesterases from purified human CD4+ and CD8+ T lymphocytes. Clin.Exp.Allergy 25 (7), 616–624. 1995bPubMedCrossRefGoogle Scholar
  228. Timmer, W., Leclerc, V., Birraux, G., Neuhauser, M., Hatzelmann, A., Bethke, T., and Wurst, W. Safety and efficacy of the new PDE4 inhibitor roflumilast administered to patients with excercise-induced asthma over 4 weeks. American Journal of Respiratory and Critical Care Medicine 161, A505. 2000Google Scholar
  229. Tomkinson, A., Karlsson, J. A., and Raeburn, D. Comparison of the effects of selective inhibitors of phosphodiesterase types III and IV in airway smooth muscle with differing beta-adrenoceptor subtypes. Br.J.Pharmacol. 108 (1), 57–61. 1993PubMedCrossRefGoogle Scholar
  230. Tomlinson, P. R., Wilson, J. W., and Stewart, A. G. Salbutamol inhibits the proliferation of human airway smooth muscle cells grown in culture: Relationship to elevated cAMP levels. Biochem.Pharmacol. 49, 1809–1819. 1995PubMedCrossRefGoogle Scholar
  231. Torphy, T. J. Phosphodiesterase isozymes: molecular targets for novel antiasthma agents. American Journal of Respiratory and Critical Care Medicine 157 (2), 351–370. 1998PubMedGoogle Scholar
  232. Torphy, T. J., Barnette, M. S., Hay, D. W., and Underwood, D. C. Phosphodiesterase IV inhibitors as therapy for eosinophil-induced lung injury in asthma. Environ.Health Perspect. 102 Suppl 10, 79–84. 1994Google Scholar
  233. Torphy, T. J., Barnette, M. S., Underwood, D. C., Griswold, D. E., Christensen, S. B., Murdoch, R. D., Nieman, R. B., and Compton, C. H. AriflowTM (SB 207499), a second generation phosphodiesterase 4 inhibitor for the treatment of asthma and COPD: from concept to clinic. Pulm.Pharmacol.Therap. 12, 131–135. 1999CrossRefGoogle Scholar
  234. Torphy, T. J., Burman, M., Huang, L. B., and Tucker, S. S. Inhibition of the low km cyclic AMP phosphodiesterase in intact canine trachealis by SKF 94836: mechanical and biochemical responses. J.Pharmacol.Exp.Ther. 246 (3), 843–850. 1988PubMedGoogle Scholar
  235. Torphy, T. J. and Cieslinski, L. B. Characterization and selective inhibition of cyclic nucleotide phosphodiesterase isozymes in canine tracheal smooth muscle. Mol.Pharmacol. 37 (2), 206–214. 1990PubMedGoogle Scholar
  236. Torphy, T. J. and Page, C. Phosphodiesterases: the journey toward therapeutics. Trends Pharmacol.Sci. 21, 157–159. 2000PubMedCrossRefGoogle Scholar
  237. Torphy, T. J., Stadel, J. M., Burman, M., Cieslinski, L. B., McLaughlin, M. M., White, J. R., and Livi, G. P. Coexpression of human cAMP-specific phosphodiesterase activity and high affinity rolipram binding in yeast. J.Biol.Chem. 267 (3), 1798–1804. 1992PubMedGoogle Scholar
  238. Torphy, T. J. and Undem, B. J. Phosphodiesterase inhibitors: new opportunities for the treatment of asthma. Thorax 46 (7), 512–523. 1991PubMedCrossRefGoogle Scholar
  239. Torphy, T. J., Undem, B. J., Cieslinski, L. B., Luttmann, M. A., Reeves, M. L., and Hay, D. W. Identification, characterization and functional role of phosphodiesterase isozymes in human airway smooth muscle. J.Pharmacol.Exp.Ther. 265 (3), 1213–1223. 1993PubMedGoogle Scholar
  240. Turner, C. R., Esser, K. M., and Wheeldon, E. B. Therapeutic intervention in a rat model of ARDS: IV. Phosphodiesterase IV inhibition. Circ.Shock 39 (3), 237–245. 1993PubMedGoogle Scholar
  241. Underwood, D. C., Bochnowicz, S., Osborn, R. R., Kotzer, C. J., Luttmann, M. A., Hay, D. W. P., Gorycki, P. D., Christensen, S. B., and Torphy, T. J. Antiasthmatic activity of the second-generation phosphodiesterase 4 (PDE4) inhibitor SB 207499 (Ariflo) in the guinea pig. J.Pharmacol.Exp.Ther. 287, 988–995. 1998PubMedGoogle Scholar
  242. Van der Pouw Kraan TCTM, Boeije, L. C. M., Snijders, A., Smeenk, R. J. T., Wijdenes, J., and Aarden, L. A. Regulation of IL-12 production by human monocytes and the influence of prostglandin E2. Annals of the New York Academy of Sciences 795 (pp 147–157). 1996Google Scholar
  243. van der Pouw, Kraan, Boeije, L. C., Smeenk, R. J., Wijdenes, J., and Aarden, L. A. Prostaglandin-E2 is a potent inhibitor of human interleukin 12 production. J.Exp.Med. 181 (2), 775–779. 1995Google Scholar
  244. van der Pouw, Kraan, van Kooten, C., Rensink, I, and Aarden, L. Interleukin (IL)-4 production by human T cells: differential regulation of IL-4 vs. IL-2 production. Eur.J.Immunol. 22 (5), 1237–1241. 1992CrossRefGoogle Scholar
  245. Verghese, M. W., McConnell, R. T., Strickland, A. B., Gooding, R. C., Stimpson, S. A., Yarnall, D. P., Taylor, J. D., and Furdon, P. J. Differential regulation of human monocyte-derived TNF alpha and IL-1 beta by type IV cAMP-phosphodiesterase (cAMPPDE) inhibitors. J.Pharmacol.Exp.Ther. 272 (3), 1313–1320. 1995PubMedGoogle Scholar
  246. Wang, P., Wu, P., Ohleth, K. M., Egan, R., and Billah, M. M. Phosphodiesterase 4B2 is the predominant phosphodiesterase species and undergoes differential regulation of gene expression in human monocytes and neutrophils. Mol.Pharmacol. 56, 170–174. 1999PubMedGoogle Scholar
  247. Weston, M. C., Anderson, N., and Peachell, P. T. Effects of phosphodiesterase inhibitors on human lung mast cell and basophil function. Br.J.Pharmacol. 121 (2), 287–295. 1997PubMedCrossRefGoogle Scholar
  248. Weston, M. C. and Peachell, P. T. Regulation of human mast cell and basophil function by cAMP. Gen.Pharmacol. 31 (5), 715–719. 1998PubMedCrossRefGoogle Scholar
  249. Wright, C. D., Kuipers, P. J., Kobylarz-Singer, D., Devall, L. J., Klinkefus, B. A., and Weishaar, R. E. Differential inhibition of human neutrophil functions. Role of cyclic AMP-specific, cyclic GMP-insensitive phosphodiesterase. Biochem.Pharmacol. 40 (4), 699–707. 1990PubMedCrossRefGoogle Scholar
  250. Wright, L. C., Seybold, J., Robichaud, A., Adcock, I. M., and Barnes, P. J. Phosphodiesterase expression in human epithelial cells. American Journal of Physiology—Lung Cellular Molecular Physiology 275 (4 19–4), L694 - L700. 1998Google Scholar
  251. Xiong, Y., Westhead, E. W., and Slakey, L. L. Role of phosphodiesterase isoenzymes in regulating intracellular cyclic AMP in adenosine-stimulated smooth muscle cells. Biochem.J. 305 (Pt 2), 627–633. 1995PubMedGoogle Scholar
  252. Xu, R. X., Hassell, A. M., Vanderwall, D., Lambert, M. H., Holmes, W. D., Luther, M. A., Rocque, W. J., Milburn, M. V., Zhao, Y., Ke, H., and Nolte, R. T. Atomic structure of PDE4: insights into phosphodiesterase mechanism a specificity. Science 288, 1822–1825. 2000PubMedCrossRefGoogle Scholar
  253. Yasui, K., Hu, B., Nakazawa, T., Agematsu, K., and Komiyama, A. Theophylline accelerates human granulocyte apoptosis not via phosphodiesterase inhibition. Journal of Clinical Investigation 100 (7), 1677–1684. 1997PubMedCrossRefGoogle Scholar
  254. Yoshimura, T., Kurita, C., Nagao, T., Usami, E., Nakao, T., Watanabe, S., Kobayashi, J., Yamazaki, F., Tanaka, H., and Nagai, H. Effects of cAMP-phosphodiesterase isozyme inhibitor on cytokine production by lipopolysaccharide-stimulated human peripheral blood mononuclear cells. Gen.Pharmacol. 29 (4), 633–638. 1997PubMedCrossRefGoogle Scholar
  255. Yoshimura, T., Nagao, T., Nakao, T., Watanabe, S., Usami, E., Kobayashi, J., Yamazaki, E, Tanaka, H., Inagaki, N., and Nagai, H. Modulation of Thl-and Th2-like cytokine production from mitogen-stimulated human peripheral blood mononuclear cells by phosphodiesterase inhibitors. Gen.Pharmacol. 30 (2), 175–180. 1998PubMedCrossRefGoogle Scholar
  256. Yu, S. M., Cheng, Z. J., and Kuo, S. C. Antiproliferative effects of A02011–1, an adenylyl cyclase activator, in cultured vascular smooth muscle cells of rat. Br.J.Pharmacol. 114 (6), 1227–1235. 1995PubMedCrossRefGoogle Scholar
  257. Zhong, W. W., Burke, P. A., Drotar, M. E., Chavali, S. R., and Forse, R. A. Effects of prostaglandin E2, cholera toxin and 8-bromo-cyclic AMP on lipopolysacchaside-induced gene expression of cytokines in human macrophages. Immunology 84 (3), 446–452. 1995PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • N. A. Jones
    • 1
  • D. Spina
    • 1
  • C. P. Page
    • 1
  1. 1.The Sackler Institute of Pulmonary Pharmacology, Pharmacology and Therapeutics DivisionGKT School of Biomedical Sciences, King’s College LondonLondonUK

Personalised recommendations