Theophylline in the Treatment of Respiratory Disease

  • N. A. Jones
  • C. P. Page
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 161)

Abstract

Theophylline has now been in clinical use, most notably in the treatment of respiratory disease, for more than a century. Traditionally classified as a bronchodilator drug, it is becoming increasingly apparent that theophylline has a range of other pharmacological effects of potential therapeutic value in the treatment of respiratory diseases. Anti-inflammatory and immunomodulatory actions of theophylline have been observed both in the laboratory with respect to inflammatory cell function and in the clinic in patient populations suffering with a range of respiratory diseases. Many of the biological effects of theophylline have been suggested to occur via an inhibitory effect on the phosphodiesterase (PDE) family of enzymes; however, studies have also shown theophylline to antagonise adenosine receptors, inhibit NF-kB, a transcription factor important in regulation of inflammatory cell cytokine activity, inhibit interleukin (IL)-5 or granulocyte-macrophage colony-stimulating factor (GM-CSF)-induced eosinophil survival, enhance histone deacetylase (HDAC) activity and affect lipid kinase and protein kinase activities in inflammatory cells. Research will no doubt continue in order to elucidate these mechanisms in an attempt to produce a theophylline-type drug with greater selectivity and higher therapeutic index, which in turn may lead to improved patient compliance and greater control of airway inflammation.

Keywords

Theophylline Phosphodiesterase (PDE) Anti-inflammatory Bronchodilator Immunomodulatory Asthma COPD 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ali, S., Mustafa, S. J., and Metzger, W. J. Adenosine receptor-mediated bronchoconstriction and bronchial hyperresponsiveness in allergic rabbit model. Am.J.Physiol 266 (3 Pt 1), L271 - L277. 1994PubMedGoogle Scholar
  2. Ashutosh, K., Sedat, M., and Fragale-Jackson, J. Effects of theophylline on respiratory drive in patients with chronic obstructive pulmonary disease. J.Clin.Pharmacol. 37 (12), 1100–1107. 1997PubMedGoogle Scholar
  3. Aubier, M. Effect of theophylline on diaphragmatic and other skeletal muscle function. J Allergy Clin.Immunol. 78 (4 Pt 2), 787–792. 1986PubMedCrossRefGoogle Scholar
  4. Aubier, M., Neukirch, C., Maachi, M., Boucara, D., Engelstatter, R., Steinijans, V., Samoyeau, R., and Dehoux, M. Effect of slow-release theophylline on nasal antigen challenge in subjects with allergic rhinitis. European Respiratory Journal 11 (5), 1105–1110. 1998PubMedCrossRefGoogle Scholar
  5. Baker, A. J. and Fuller, R. W. Effect of cyclic adenosine monophosphate, 5’-(N- ethylcarboxyamido)-adenosine and methylxanthines on the release of thromboxane and lysosomal enzymes from human alveolar macrophages and peripheral blood monocytes in vitro. Eur.J.Pharmacol. 211 (2), 157–161. 1992PubMedCrossRefGoogle Scholar
  6. Banner, K. H., Harbinson, P., Costello, J. F., and Page, C. P. Effect of PDE inhibitors on the proliferation of human peripheral blood mononuclear cells (HPBM) from mild asthmatics and normals. Am.J.Resp.Crit.Care Med. 155 (4). 1997aGoogle Scholar
  7. Banner, K. H., Hoult, J. R., Taylor, M. N., Landells, L. J., and Page, C. P. Possible Contribution of Prostaglandin E2 to the antiproliferative effect of phosphodiesterase 4 inhibitors in human mononuclear cells. Biochem.Pharmacol. 58(9), 1487–1495. 1–111999Google Scholar
  8. Banner, K. H. and Page, C. Prostaglandins contribute to the anti-proliferative effect of isoenzyme selective phosphodiesterase 4 inhibitors but not theophylline in human mononuclear cells. Br.J.Pharmacol. 120. 1997bGoogle Scholar
  9. Barnes, P. J. Managing Chronic Obstructive Pulmonary Disease. 2nd. 2000. Science Press LtdGoogle Scholar
  10. Barnes, P. J. New concepts in chronic obstructive pulmonary disease. Annu.Rev.Med. 54, 113–129. 2003PubMedCrossRefGoogle Scholar
  11. Barnes, P. J., Jonsson, B., and Klim, J. B. The costs of asthma. Eur.Respir.J. 9 (4), 636–642. 1996PubMedCrossRefGoogle Scholar
  12. Barnes, P. J. and Pauwels, R. A. Theophylline in the management of asthma: time for reappraisal? Eur.Respir.J. 7 (3), 579–591. 1994PubMedCrossRefGoogle Scholar
  13. Becker, A. B., Simons, K. J., Gillespie, C. A., and Simons, E E. The bronchodilator effects and pharmacokinetics of caffeine in asthma. N.Engl.J.Med. 310, 743–746. 1984PubMedCrossRefGoogle Scholar
  14. Bel, E. H., Timmers, M. C., Zwinderman, A. H., Dijkman, J. H., and Sterk, P. J. The effect of inhaled corticosteroids on the maximal degree of airway narrowing to methacholine in asthmatic subjects. Am.Rev.Respir.Dis. 143 (1), 109–113. 1991aPubMedGoogle Scholar
  15. Bel, E. H., Zwinderman, A. H., Timmers, M. C., Dijkman, J. H., and Sterk, P. J. The protective effect of a beta 2 agonist against excessive airway narrowing in response to bronchoconstrictor stimuli in asthma and chronic obstructive lung disease. Thorax 46 (1), 9–14. 1991bPubMedCrossRefGoogle Scholar
  16. Bessler, H., Gilgal, R., Djaldetti, M., and Zahavi, I. Effect of pentoxifylline on the phagocytic activity, cAMP levels, and superoxide anion production by monocytes and polymorphonuclear cells. J.Leukoc.Biol. 40 (6), 747–754. 1986PubMedGoogle Scholar
  17. Bjorck, T., Gustafsson, L. E., and Dahlen, S. E. Isolated bronchi from asthmatics are hyperresponsive to adenosine, which apparently acts indirectly by liberation of leukotrienes and histamine. Am.Rev.Respir.Dis. 145 (5), 1087–1091. 1992PubMedCrossRefGoogle Scholar
  18. Bloemen, P. G., van-den-Tweel, M. C., Henricks, P. A., Engels, F., Kester, M. H., van-deLoo, P. G., Blomjous, F. J., and Nijkamp, E P. Increased cAMP levels in stimulated neutrophils inhibit their adhesion to human bronchial epithelial cells. Am.J.Physiol. 272 (4 Pt 1), L580 - L587. 1997PubMedGoogle Scholar
  19. Brenner, M., Berkowitz, R., Marshall, N., and Strunk, R. C. Need for theophylline in severe steroid-requiring asthmatics. Clin.Allergy 18 (2), 143–150. 1988PubMedCrossRefGoogle Scholar
  20. Buckley, J. T. Properties of human erythrocyte phosphatidylinositol kinase and inhibition by adenosine, ADP and related compounds. Biochim.Biophys.Acta 498(1), 1–9. 23–61977Google Scholar
  21. Carletto, A., Biasi, D., Bambara, L. M., Caramaschi, P., Bonazzi, M. L., Lussignoli, S., Andrioli, G., and Bellavite, R Studies of skin-window exudate human neutrophils: increased resistance to pentoxifylline of the respiratory burst in primed cells. Inflammation 21 (2), 191–203. 1997PubMedCrossRefGoogle Scholar
  22. Chrystyn, H., Mulley, B. A., and Peake, M. D. Dose response relation to oral theophylline in severe chronic obstructive airways disease. BMJ 297(6662), 1506–1510. 10–121988Google Scholar
  23. Cockcroft, D. W., Murdock, K. Y., Gore, B. P., O’Byrne, R M., and Manning, P. Theophylline does not inhibit allergen-induced increase in airway responsiveness to methacholine. J.Allergy Clin.Immunol. 83 (5), 913–920. 1989PubMedCrossRefGoogle Scholar
  24. Columbo, M., Horowitz, E. M., McKenzie, White, Kagey, Sobotka, and Lichtenstein, L. M. Pharmacologic control of histamine release from human basophils induced by platelet-activating factor. Int.Arch.Allergy Immunol. 102 (4), 383–390. 1993PubMedCrossRefGoogle Scholar
  25. Cooper, C. B., Davidson, A. C., and Cameron, I. R. Aminophylline, respiratory muscle strength and exercise tolerance in chronic obstructive airway disease. Bull.Eur Physiopathol.Respir 23 (1), 15–22. 1987PubMedGoogle Scholar
  26. Coward, W. R., Sagara, H., and Church, M. K. Asthma, adenosine, mast cells and theophylline. Clin.Exp.Allergy 28 Suppl 3, 42–46. 1998Google Scholar
  27. Cox, L. R., Murphy, S. K., and Ramos, K. Modulation of phosphoinositide metabolism in aortic smooth muscle cells by allylamine. Exp.Mol.Pathol. 53 (1), 52–63. 1990PubMedCrossRefGoogle Scholar
  28. Crescioli, S., Spinazzi, A., Plebani, M., Pozzani, M., Mapp, C. E., Boschetto, P., and Fabbri, L. M. Theophylline inhibits early and late asthmatic reactions induced by allergens in asthmatic subjects. Ann.Allergy 66 (3), 245–251. 1991PubMedGoogle Scholar
  29. Crocker, I. C., Townley, R. G., and Khan, M. M. Phosphodiesterase inhibitors suppress proliferation of peripheral blood mononuclear cells and interleukin-4 and -5 secretion by human T-helper type 2 cells. Immunopharmacology 31, 223–235. 1996PubMedCrossRefGoogle Scholar
  30. Culpitt, S. V., de Matos, C., Russell, R. E., Donnelly, L. E., Rogers, D. F., and Barnes, R J. Effect of theophylline on induced sputum inflammatory indices and neutrophil chemotaxis in chronic obstructive pulmonary disease. Am.J Respir Crit Care Med. 165(10), 1371–1376. 15–5–2002Google Scholar
  31. Cushley, M. J., Tattersfield, A. E., and Holgate, S. T. Inhaled adenosine and guanosine on airway resistance in normal and asthmatic subjects. Br.J.Clin.Pharmacol. 15 (2), 161–165. 1983PubMedCrossRefGoogle Scholar
  32. Cushley, M. J., Tattersfield, A. E., and Holgate, S. T. Adenosine-induced bronchoconstriction in asthma Antagonism by inhaled theophylline. Am.Rev.Respir.Dis. 129 (3), 380–384. 1984PubMedGoogle Scholar
  33. D’Alonzo, G. E., Smolensky, M. H., Feldman, S, Gianotti, L. A., Emerson, M. B., Staudinger, H., and Steinijans, V. W. Twenty-four hour lung function in adult patients with asthma. Chronoptimized theophylline therapy once-daily dosing in the evening versus conventional twice-daily dosing. Am.Rev.Respir.Dis. 142 (1), 84–90. 1990PubMedGoogle Scholar
  34. Darnall-Jr, R. A. Aminophylline reduces hypoxic ventilatory depression: possible role of adenosine. Pediatr.Res. 19 (7), 706–710. 1995Google Scholar
  35. De Monchy, J. G., Kauffman, H. E, Venge, R, Koeter, G. H., Jansen, H. M., Sluiter, H. J., and de Vries, K. Bronchoalveolar eosinophilia during allergen-induced late asthmatic reactions. Am.Rev.Respir.Dis. 131 (3), 373–376. 1985PubMedGoogle Scholar
  36. Derian, C. K., Santulli, R. J., Rao, R E., Solomon, H. E, and Barrett, J. A. Inhibition of chemotactic peptide-induced neutrophil adhesion to vascular endothelium by cAMP modulators. J.Immunol. 154 (1), 308–317. 1995PubMedGoogle Scholar
  37. Di Stefano, A., Caramori, G., Oates, T., Capelli, A., Lusuardi, M., Gnemmi, I., Ioli, F., Chung, K. F., Donner, C. F., Barnes, P. J., and Adcock, I. M. Increased expression of nuclear factor-kappaB in bronchial biopsies from smokers and patients with COPD. Eur Respir J 20 (3), 556–563. 2002PubMedCrossRefGoogle Scholar
  38. Dullinger, D., Kronenberg, R., and Niewoehner, D. E. Efficacy of inhaled metaproterenol and orally-administered theophylline in patients with chronic airflow obstruction. Chest 89(2), 171–173. 1986 elGoogle Scholar
  39. Hashim, A., D’Agostino, B., Matera, M. G., and Page, C. Characterization of adenosine receptors involved in adenosine-induced bronchoconstriction in allergic rabbits. Br.J.Pharmacol. 119 (6), 1262–1268. 1996PubMedCrossRefGoogle Scholar
  40. Elferink, J. G., Huizinga, T. W., and de–Koster, B. M. The effect of pentoxifylline on human neutrophil migration: a possible role for cyclic nucleotides. Biochem.Pharmacol. 54(4), 475–480. 15–8–1997Google Scholar
  41. Elliott, K. R. and Leonard, E. J. Interactions of formylmethionyl-leucyl-phenylalanine, adenosine, and phosphodiesterase inhibitors in human monocytes. Effects on superoxide release, inositol phosphates and cAMP. FEBS Lett. 254 (1–2), 94–98. 1989PubMedCrossRefGoogle Scholar
  42. Endres, S., Fulle, H. J., Sinha, B., Stoll, D., Dinarello, C. A., Gerzer, R., and Weber, P. C. Cyclic nucleotides differentially regulate the synthesis of tumour necrosis factor-alpha and interleukin-1 beta by human mononuclear cells. Immunology 72 (1), 56–60. 1991PubMedGoogle Scholar
  43. Enk, A. H., Angeloni, V. L., Udey, M. C., and Katz, S. I. Inhibition of Langerhans cell antigen–presenting function by IL–10. A role for IL–10 in induction of tolerance. J.Immunol. 151(5), 2390–2398. 1–9–1993Google Scholar
  44. Evans, D. J., Taylor, D. A., Zetterstrom, O., Chung, K. F., O’Connor, B. J., and Barnes, P. J. A comparison of low-dose inhaled budesonide plus theophylline and high-dose inhaled budesonide for moderate asthma. N.Engl.J.Med 337, 1412–1418. 1997PubMedCrossRefGoogle Scholar
  45. Ezeamuzie, C. I. Involvement of A(3) receptors in the potentiation by adenosine of the inhibitory effect of theophylline on human eosinophil degranulation: possible novel mechanism of the anti–inflammatory action of theophylline. Biochem.Pharmacol. 61(12),1551–1559.15–6–2001Google Scholar
  46. Feoktistov, I and Biaggioni, I. Adenosine Alb receptors evoke interleukin-8 secretion in human mast cells. An enprofylline-sensitive mechanism with implications for asthma. J.Clin.Invest. 96 (4), 1979–1986. 1995Google Scholar
  47. Feoktistov, I., Polosa, R., Holgate, S. T., and Biaggioni, I. Adenosine A2B receptors: a novel therapeutic target in asthma? Trends Pharmacol.Sci. 19 (4), 148–153. 1998PubMedCrossRefGoogle Scholar
  48. Ferrer, P., Dihn-Xuan, T., and Chanal, I. Bronchodilator activity of LAS 31025, a new selective phosphodiesterase inhibitor. Am.J Respir Crit Care Med. 155. 1997Google Scholar
  49. Ferretti, M. E., Spisani, S., Pareschi, M. C., Buzzi, M., Cavallaro, R., Traniello, S., Reali, E., Torrini, I, Paradisi, M. P., and Zecchini, G. P. Two new formulated peptides able to activate chemotaxis and respiratory burst selectively as tools for studying human neutrophil responses. Cell Signal. 6 (1), 91–101. 1994PubMedCrossRefGoogle Scholar
  50. Fink, G., Mittelman, M., Shohat, B., and Spitzer, S. A. Theophylline-induced alterations in cellular immunity in asthmatic patients. Clin.Allergy 17 (4), 313–316. 1987PubMedCrossRefGoogle Scholar
  51. Finkelstein, R., Fraser, R. S., and Ghezzo, H. Alveolar inflammation and its relation to emphysema in smokers. Am.J.Resp.Crit.Care Med. 152, 1666–1672. 1995PubMedGoogle Scholar
  52. Finnerty, J. P., Lee, C., Wilson, S., Madden, J., Djukanovic, R., and Holgate, S. T. Effects of theophylline on inflammatory cells and cytokines in asthmatic subjects: a placebo-controlled parallel group study. Eur.Respir.J. 9, 1672–1677. 1996PubMedCrossRefGoogle Scholar
  53. Fonteh, A. N., Winkler, J. D., Torphy, T. J., Heravi, J., Undem, B. J., and Chilton, F. H. Influence of isoproterenol and phosphodiesterase inhibitors on platelet-activating factor biosynthesis in the human neutrophil. J.Immunol. 151 (1), 339–350. 1993PubMedGoogle Scholar
  54. Foukas, L. C., Daniele, N., Ktori, C., Anderson, K. E., Jensen, J., and Shepherd, P. R. Direct effects of caffeine and theophylline on p110 delta and other phosphoinositide 3–kinases. Differential effects on lipid kinase and protein kinase activities. J Biol.Chem. 277(40), 37124–37130. 4–10–2002Google Scholar
  55. Franzini, E., Sellak, H., Babin, Chevaye C., Hakim, J., and Pasquier, C. Effects of pentoxifylline on the adherence of polymorphonuclear neutrophils to oxidant-stimulated human endothelial cells: involvement of cyclic AMP. J.Cardiovasc.Pharmacol. 25 Suppl 2, S92 - S95. 1995Google Scholar
  56. Frossard, N., Landry, Y., Pauli, G., and Ruckstuhl, M. Effects of cyclic AMP- and cyclic GMP- phosphodiesterase inhibitors on immunological release of histamine and on lung contraction. Br.J.Pharmacol. 73 (4), 933–938. 1981PubMedCrossRefGoogle Scholar
  57. Gardette, J., Margelin, D., Maziere, J. C., Bertrand, J., and Picard, J. Effect of dibutyryl cyclic AMP and theophylline on lipoprotein lipase secretion by human monocyte-derived macrophages. FEBS Lett. 225 (1–2), 178–182. 1987PubMedCrossRefGoogle Scholar
  58. Giembycz, M. A. Phosphodiesterase 4 inhibitors and the treatment of asthma: where are we now and where do we go from here? Drugs 59 (2), 193–212. 2000PubMedCrossRefGoogle Scholar
  59. Gonzalez, M. C., Diaz, P., Galleguillos, E R., Ancic, P., Cromwell, O., and Kay, A. B. Allergen-induced recruitment of bronchoalveolar helper (OKT4) and suppressor (OKT8) T-cells in asthma. Relative increases in OKT8 cells in single early responders compared with those in late-phase responders. Am.Rev.Respir.Dis. 136 (3), 600–604. 1987PubMedCrossRefGoogle Scholar
  60. Griswold, D. E., Webb, E. F., Breton, J., White, J. R., Marshall, P. J., and Torphy, T. J. Effect of selective phosphodiesterase type IV inhibitor, rolipram, on fluid and cellular phases of inflammatory response. Inflammation 17 (3), 333–344. 1993PubMedCrossRefGoogle Scholar
  61. Guillou, P. J., Ramsden, C., Kerr, M., Davison, A. M., and Giles, G. R. A prospective controlled clinical trial of aminophylline as an adjunctive immunosuppressive agent. Transplant.Proc. 16 (5), 1218–1220. 1984PubMedGoogle Scholar
  62. Guyatt, G. H., Townsend, M., Pugsley, S. O., Keller, J. L., Short, H. D., Taylor, D. W., and Newhouse, M. T. Bronchodilators in chronic air-flow limitation. Effects on airway function, exercise capacity, and quality of life. Am.Rev.Respir Dis. 135 (5), 1069–1074. 1987PubMedGoogle Scholar
  63. Hamid, Q., Azzawi, M., Ying, S., Moqbel, R., Wardlaw, A. J., Corrigan, C. J., Bradley, B., Durham, S. R., Collins, J. V., Jeffery, P. K., and. Expression of mRNA for interleukin5 in mucosal bronchial biopsies from asthma. J.Clin.Invest 87 (5), 1541–1546. 1991PubMedCrossRefGoogle Scholar
  64. Hancock, W. W., Pleau, M. E., and Kobzik, L. Recombinant granulocyte-macrophage colony-stimulating factor down-regulates expression of IL-2 receptor on human mononuclear phagocytes by induction of prostaglandin E. J.Immunol. 140 (9), 3021–3025. 1988Google Scholar
  65. Hart, L. A., Krishnan, V. L., Adcock, I. M., Barnes, P. J., and Chung, K. F. Activation and localization of transcription factor, nuclear factor-kappaB, in asthma. Am.J Respir Crit Care Med. 158 (5 Pt 1), 1585–1592. 1998PubMedGoogle Scholar
  66. Harvath, L., Robbins, J. D., Russell, A. A., and Seamon, K. B. cAMP and human neutro-phil chemotaxis. Elevation of cAMP differentially affects chemotactic responsiveness. J Immunol. 146 (1), 224–232. 1991PubMedGoogle Scholar
  67. Hatzelmann, A., Tenor, H., and Schudt, C. Differential effects of non-selective and selective phosphodiesterase inhibitors on human eosinophil functions. Br.J.Pharmacol. 114 (4), 821–831. 1995PubMedCrossRefGoogle Scholar
  68. Hay, J. G., Stone, P., Carter, J., Church, S., Eyre-Brook, A., Pearson, M. G., Woodcock, A. A., and Calverley, P. M. Bronchodilator reversibility, exercise performance and breathlessness in stable chronic obstructive pulmonary disease. Eur Respir J 5 (6), 659–664. 1992PubMedGoogle Scholar
  69. Hendeles, L., Harman, E., Huang, D., O’Brien, R., Blake, K., and Delafuente, J. Theophylline attenuation of airway responses to allergen: comparison with cromolyn metered-dose inhaler. J.Allergy Clin.Immunol. 95 (2), 505–514. 1995PubMedCrossRefGoogle Scholar
  70. Hichami, A., Boichot, E., Germain, N., Legrand, A., Moodley, I, and Lagente, V. Involvement of cyclic AMP in the effects of phosphodiesterase IV inhibitors on arachidonate release from mononuclear cells. Eur.J.Pharmacol. 291 (2), 91–97. 1995PubMedCrossRefGoogle Scholar
  71. Hidi, R., Timmermans, S., Liu, E., Schudt, C., Dent, G., Holgate, S. T., and Djukanovic, R. Phosphodiesterase and cyclic adenosine monophosphate-dependent inhibition of T-lymphocyte chemotaxis. Eur Respir J 15 (2), 342–349. 2000PubMedCrossRefGoogle Scholar
  72. Honeyman, T. W., Strohsnitter, W., Scheid, C. R., and Schimmel, R. J. Phosphatidic acid and phosphatidylinositol labelling in adipose tissue. Relationship to the metabolic effects of insulin and insulin–like agents. Biochem.J 212(2), 489–498. 15–5–1983Google Scholar
  73. Hossain, M., Okubo, Y., and Sekiguchi, M. Effects of various drugs (staurosporine, herbimycin A, ketotifen, theophylline, FK506 and cyclosporin A) on eosinophil viability. Arerugi. 43 (6), 711–717. 1994PubMedGoogle Scholar
  74. Imhof, A. and Wolfe, A. P. Transcription: gene control by targeted histone acetylation. Curr.Biol. 8(12), R422–R424. 4–6–1998Google Scholar
  75. Ito, K. and Adcock, I. M. Histone acetylation and histone deacetylation. Mol.Biotechnol. 20 (1), 99–106. 2002aPubMedCrossRefGoogle Scholar
  76. Ito, K., Barnes, P. J., and Adcock, I. M. Glucocorticoid receptor recruitment of histone deacetylase 2 inhibits interleukin-lbeta-induced histone H4 acetylation on lysines 8 and 12. Mol.Cell Biol. 20 (18), 6891–6903. 2000PubMedCrossRefGoogle Scholar
  77. Ito, K., Lim, S., Caramori, G., Chung, K. E, Barnes, P. J., and Adcock, I. M. Cigarette smoking reduces histone deacetylase 2 expression, enhances cytokine expression, and inhibits glucocorticoid actions in alveolar macrophages. FASEB J 15(6), 11101112. 2001Google Scholar
  78. Ito, K., Lim, S., Caramori, G., Cosio, B., Chung, K. F., Adcock, I. M., and Barnes, P. J. A molecular mechanism of action of theophylline: Induction of histone deacetylase activity to decrease inflammatory gene expression. Proc.Natl.Acad.Sci.U.S.A 99(13), 8921–8926. 25–6–2002bGoogle Scholar
  79. Jaffar, Z. H., Sullivan, P., Page, C. P., and Costello, J. Low-dose theophylline modulates T-lymphocyte activation in allergen-challenged asthmatics. Eur.Respir.J. 9, 456–462. 1996PubMedCrossRefGoogle Scholar
  80. Jarjour, N. N., Lacouture, P. G., and Busse, W. W. Theophylline inhibits the late asthmatic response to nighttime antigen challenge in patients with mild atopic asthma. Ann.Allergy Asthma Immunol. 81 (3), 231–236. 1998PubMedCrossRefGoogle Scholar
  81. Javaheri, S. and Guerra, L. Lung function, hypoxic and hypercapnic ventilatory responses, and respiratory muscle strength in normal subjects taking oral theophylline. Thorax 45 (10), 743–747. 1990PubMedCrossRefGoogle Scholar
  82. Jeurgens, U. R., Overlack, A., and Vetter, H. Theophylline inhibits the formation of leukotriene B4 (LTB4) by enhancement of cyclic-AMP and prostaglandin E2 (PGE2) production in normal human monocytes in vitro. Eur.Resp.J. 17S, 36–85. 1993Google Scholar
  83. Jones, N. A., Page, C., and Lever, R. The effect of selective phosphodiesterase (PDE) isoenzyme inhibition on F-MET-LEU-PHE (fMLP) and tumor necrosis factor-alpha induced human neutrophil elastase release. Am.J.Resp.Crit.Care Med. 163. 2001Google Scholar
  84. Kammer, G. M. The adenylate cyclase-cAMP-protein kinase A pathway and regulation of the immune response. Immunol.Today 9 (7–8), 222–229. 1988PubMedCrossRefGoogle Scholar
  85. Kassis, S., Lee, J. C., and Hanna, N. Effects of prostaglandins and cAMP levels on monocyte IL-1 production. Agents Actions 27 (3–4), 274–276. 1989PubMedCrossRefGoogle Scholar
  86. Keatings, V. M., Collins, P. D., and Scott, D. M. Differences in interleukin-8 and tumour necrosis factor-alpha in induced sputum from patients with chronic obstructive pulmonary disease or asthma. Am.J.Resp.Crit.Care Med. 153, 530–534. 1996PubMedGoogle Scholar
  87. Kelloway, J. S., Wyatt, R. A., and Adlis, S. A. Comparison of patients’ compliance with prescribed oral and inhaled asthma medications. Arch.Intern.Med. 154(12), 13491352.27–6–1994Google Scholar
  88. Kidney, J., Dominguez, M., Taylor, P. M., Rose, M., Chung, K. F., and Barnes, P. J. Immunomodulation by theophylline in asthma. Demonstration by withdrawal of therapy. American Journal of Respiratory and Critical Care Medicine 151 (6), 1907–1914. 1995PubMedGoogle Scholar
  89. Kita, H., Abu, Ghazaleh, Gleich, G. J., and Abraham, R. T. Regulation of Ig-induced eosinophil degranulation by adenosine 3’,5’-cyclic monophosphate. J.Immunol. 146 (8), 2712–2718. 1991PubMedGoogle Scholar
  90. Knudsen, P. J., Dinarello, C. A., and Strom, T. B. Prostaglandins posttranscriptionally inhibit monocyte expression of interleukin 1 activity by increasing intracellular cyclic adenosine monophosphate. J.Immunol. 137 (10), 3189–3194. 1986PubMedGoogle Scholar
  91. Kongragunta, V. R., Druz, W. S., and Sharp, J. T. Dyspnea and diaphragmatic fatigue in patients with chronic obstructive pulmonary disease. Responses to theophylline. Am.Rev.Respir Dis. 137 (3), 662–667. 1988PubMedGoogle Scholar
  92. Kosmas, E. N., Michaelides, S. A., Polychronaki, A., Roussou, T., Toukmatzi, S., Polychronopoulos, V., and Baxevanis, C. N. Theophylline induces a reduction in circulating interleukin-4 and interleukin-5 in atopic asthmatics [In Process Citation]. Eur Respir J 13 (1), 53–58. 1999PubMedGoogle Scholar
  93. Kotecha, S., Taylor, I. K., and Shaw, R. J. Pharmacological modulation of platelet-derived growth factor (B) mRNA expression in alveolar macrophages and adherent monocytes. Pulm.Pharmacol. 7 (6), 383–391. 1994PubMedCrossRefGoogle Scholar
  94. Kraft, M., Pak, J., Borish, L., and Martin, R. J. Theophylline’s effect on neutrophil function and the late asthmatic response. Journal of Allergy Clinical Immunology 98 (2), 251–257. 1996aCrossRefGoogle Scholar
  95. Kraft, M., Torvik, J. A., Trudeau, J. B., Wenzel, S. E., and Martin, R. J. Theophylline: potential antiinflammatory effects in nocturnal asthma. J.Allergy C1in.Immunol. 97 (6), 1242–1246. 1996bCrossRefGoogle Scholar
  96. Landells, L. J., Jensen, M. W., Orr, L. M., Spina, D., O’Connor, B. J., and Page, C. P. The role of adenosine receptors in the action of theophylline on human peripheral blood mononuclear cells from healthy and asthmatic subjects. Br.J.Pharmacol. 129 (6), 1140–1144. 2000aPubMedCrossRefGoogle Scholar
  97. Landells, L. J., Spina, D., Souness, J. E., O’Connor, B. J., and Page, C. P. A biochemical and functional assessment of monocyte phosphodiesterase activity in healthy and asthmatic subjects. Pulm.Pharmacol.Ther. 13 (5), 231–239. 2000bPubMedCrossRefGoogle Scholar
  98. Landsberg, K. F., Vaughan, L. M., and Heffner, J. E. The effect of theophylline on respiratory muscle contractility and fatigue. Pharmacotherapy 10 (4), 271–279. 1990PubMedGoogle Scholar
  99. Lappin, D., Riches, D. W., Damerau, B., and Whaley, K. Cyclic nucleotides and their relationship to complement-component-C2 synthesis by human monocytes. Biochem.J. 222 (2), 477–486. 1984PubMedGoogle Scholar
  100. Lichtenstein, L. M. and Margolis, S. Histamine release in vitro: inhibition by catecholamines and methylxanthines. Science 161 (844), 902–903. 1968PubMedCrossRefGoogle Scholar
  101. Lidington, E., Nohammer, C., Dominguez, M., Ferry, B., and Rose, M. L. Inhibition of the transendothelial migration of human lymphocytes but not monocytes by phosphodiesterase inhibitors. Clinical and Experimental Immunology 104, 66–71. 1996PubMedCrossRefGoogle Scholar
  102. Lim, L. K., Hunt, N. H., and Weidemann, M. J. Reactive oxygen production, arachidonate metabolism and cyclic AMP in macrophages. Biochem.Biophys.Res.Commun. 114 (2), 549–555. 1983PubMedCrossRefGoogle Scholar
  103. Lim, S., Tornita, K., Carramori, G., Jatakanon, A., Oliver, B., Keller, A., Adcock, I., Chung, K. F., and Barnes, P. J. Low–dose theophylline reduces eosinophilic inflammation but not exhaled nitric oxide in mild asthma. Am.J Respir Crit Care Med. 164(2), 273–276. 15–7–2001Google Scholar
  104. Limatibul, S., Shore, A., Dosch, H. M., and Gelfand, E. W. Theophylline modulation of E-rosette formation: an indicator of T-cell maturation. Clinical and Experimental Immunology 33 (3), 503–513. 1978PubMedGoogle Scholar
  105. Lorenz, J. J., Furdon, P. J., Taylor, J. D., Verghese, M. W., Chandra, G., Kost, T. A., Haneline, S. A., Roner, L. A., and Gray, J. G. A cyclic adenosine 3’,5’-monophosphate signal is required for the induction of IL-1 beta by TNF-alpha in human monocytes. J.Immunol. 155 (2), 836–844. 1995PubMedGoogle Scholar
  106. Louis, R., Bury, T., Corhay, J. L., and Radermecker, M. LY 186655, a phosphodiesterase inhibitor, inhibits histamine release from human basophils, lung and skin fragments. Int.J.Immunopharmacol. 14 (2), 191–194. 1992PubMedCrossRefGoogle Scholar
  107. Louis, R. E. and Radermecker, M. F. Substance P-induced histamine release from human basophils, skin and lung fragments: effect of nedocromil sodium and theophylline. Int.Arch.Allergy Appl.Immunol. 92 (4), 329–333. 1990PubMedCrossRefGoogle Scholar
  108. Magnussen, H., Reuss, G., and Jones, R. Theophylline has a dose-related effect on the airway response to inhaled histamine and methacholine in asthmatics. Am.Rev.Respir.Dis. 136 (5), 1163–1167. 1987PubMedCrossRefGoogle Scholar
  109. Mahler, D. A., Matthay, R. A., Snyder, P. E., Wells, C. K., and Loke, J. Sustained-release theophylline reduces dyspnea in nonreversible obstructive airway disease. Am.Rev.Respir Dis. 131 (1), 22–25. 1985PubMedGoogle Scholar
  110. Mann, J. S. and Holgate, S. T. Specific antagonism of adenosine-induced bronchoconstriction in asthma by oral theophylline. Br.J.Clin.Pharmacol. 19 (5), 685–692. 1985PubMedCrossRefGoogle Scholar
  111. Mapp, C., Boschetto, P., dal Vecchio, L., Crescioli, S., de Marzo, N., Paleari, D., and Fabbri, L. M. Protective effect of antiasthma drugs on late asthmatic reactions and increased airway responsiveness induced by toluene diisocyanate in sensitized subjects. Am.-Rev Respir.Dis. 136 (6), 1403–1407. 1987PubMedCrossRefGoogle Scholar
  112. Marsh, G. D., McFadden, R. G., Nicholson, R. L., Leasa, D. J., and Thompson, R. T. Theophylline delays skeletal muscle fatigue during progressive exercise. Am.Rev.Respir Dis. 147 (4), 876–879. 1993PubMedGoogle Scholar
  113. Marvin, P. M., Baker, B. J., Dutt, A. K., Murphy, M. L., and Bone, R. C. Physiologic effects of oral bronchodilators during rest and exercise in chronic obstructive pulmonary disease. Chest 84 (6), 684–689. 1983PubMedCrossRefGoogle Scholar
  114. Mary, D., Aussel, C., Ferrua, B., and Fehlmann, M. Regulation of interleukin 2 synthesis by cAMP in human T cells. J.Immunol. 139 (4), 1179–1184. 1987PubMedGoogle Scholar
  115. Mascali, J. J., Cvietusa, P., Negri, J., and Borish, L. Anti-inflammatory effects of theophylline: modulation of cytokine production. Ann.Allergy Asthma Immunol. 77 (1), 3438. 1996Google Scholar
  116. Momose, T., Okubo, Y., Horie, S., Suzuki, J., Isobe, M., and Sekiguchi, M. Effects of intracellular cyclic AMP modulators on human eosinophil survival, degranulation and CD11b expression. International Archives of Allergy Immunology 117 (2), 138–145. 1998CrossRefGoogle Scholar
  117. Murciano, D., Aubier, M., Lecocguic, Y., and Pariente, R. Effects of theophylline on diaphragmatic strength and fatigue in patients with chronic obstructive pulmonary disease. N.Engl.J Med. 311(6), 349–353. 9–8–1984Google Scholar
  118. Murciano, D., Auclair, M. H., Pariente, R., and Aubier, M. A randomized, controlled trial of theophylline in patients with severe chronic obstructive pulmonary disease. N.Engl.J Med. 320(23), 1521–1525.8–6–1989Google Scholar
  119. Mygind, N. Glucocorticosteroids and rhinitis. Allergy 48 (7), 476–490. 1993PubMedCrossRefGoogle Scholar
  120. Naclerio, R. M., Bartenfelder, D., Proud, D., Togias, A. G., Meyers, D. A., Kagey, Sobotka, Norman, P. S., and Lichtenstein, L. M. Theophylline reduces histamine release during pollen-induced rhinitis. J.Allergy Clin.Immunol. 78 (5 Pt 1), 874–876. 1986PubMedCrossRefGoogle Scholar
  121. Nielson, C. P., Crowley, J. J., Cusack, B. J., and Vestal, R. E. Therapeutic concentrations of theophylline and enprofylline potentiate catecholamine effects and inhibit leukocyte activation. J.Allergy Clin.Immunol. 78 (4 Pt 1), 660–667. 1986PubMedCrossRefGoogle Scholar
  122. Nielson, C. P., Crowley, J. J., Morgan, M. E., and Vestal, R. E. Polymorphonuclear leukocyte inhibition by therapeutic concentrations of theophylline is mediated by cyclic3’,5’-adenosine monophosphate. Am.Rev.Respir.Dis. 137 (1), 25–30. 1988PubMedCrossRefGoogle Scholar
  123. Niwa, M., Hara, A., Kanamori, Y., Matsuno, H., Kozawa, O., Yoshimi, N., Mori, H., and Uematsu, T. Inhibition of tumor necrosis factor–alpha induced neutrophil apoptosis by cyclic AMP: involvement of caspase cascade. Eur.J.Pharmacol. 371(1), 59–67.23–4–1999Google Scholar
  124. Nourshargh, S. and Hoult, J. R. Inhibition of human neutrophil degranulation by forskolin in the presence of phosphodiesterase inhibitors. Eur.J.Pharmacol. 122 (2), 205–212. 1986PubMedCrossRefGoogle Scholar
  125. Nyce, J. W. and Metzger, W. J. DNA antisense therapy for asthma in an animal model. Nature 385(6618), 721–725. 20–2–1997Google Scholar
  126. Ohta, K. and Yamashita, N. Apoptosis of eosinophils and lymphocytes in allergic inflammation. J Allergy Clin Immunol 104 (1), 14–21. 1999PubMedCrossRefGoogle Scholar
  127. Okkenhaug, K., Bilancio, A., Farjot, G., Priddle, H., Sancho, S., Peskett, E., Pearce, W., Meek, S. E., Salpekar, A., Waterfield, M. D., Smith, A. J., and Vanhaesebroeck, B. Impaired B and T cell antigen receptor signaling in p110delta PI 3– kinase mutant mice. Science 297(5583), 1031–1034. 9–8–2002Google Scholar
  128. Okubo, S., Konno, K., Ishizaki, T., Kubo, M., Suganuma, T., and Takizawa, T. Effect of theophylline on respiratory neuromuscular drive. Eur J Clin.Pharmacol. 33 (1), 85–88. 1987PubMedCrossRefGoogle Scholar
  129. Orange, R. P., Kaliner, M. A., Laraia, P. J., and Austen, K. F. Immunological release of histamine and slow reacting substance of anaphylaxis from human lung. II. Influence of cellular levels of cyclic AMP. Fed.Proc. 30 (6), 1725–1729. 1971PubMedGoogle Scholar
  130. Ottonello, L., Gonella, R., Dapino, P., Sacchetti, C., and Dallegri, E Prostaglandin E2 inhibits apoptosis in human neutrophilic polymorphonuclear leukocytes: role of intracellular cyclic AMP levels. Exp.Hematol. 26 (9), 895–902. 1998Google Scholar
  131. Page, C. P., Cotter, T., Kilfeather, S., Sullivan, P., Spina, D., and Costello, J. F. Effect of chronic theophylline treatment on the methacholine dose-response curve in allergic asthmatic subjects. European Respiratory Journal 12 (1), 24–29. 1998PubMedCrossRefGoogle Scholar
  132. Pardi, R., Zocchi, M. R., Ferrero, E., Ciboddo, G. E, Inverardi, L., and Rugarli, C. In vivo effects of a single infusion of theophylline on human peripheral blood lymphocytes. Clinical and Experimental Immunology 57(3), 722–728. 1984Google Scholar
  133. Paul, Eugene, Pene, J., Bousquet, J., and Dugas, B. Role of cyclic nucleotides and nitric oxide in blood mononuclear cell IgE production stimulated by IL-4. Cytokine 7 (1), 64–69. 1995CrossRefGoogle Scholar
  134. Pauwels, R., van Renterghem, D., van der Straeten, M., Johannesson, N., and Persson, C. G. The effect of theophylline and enprofylline on allergen-induced bronchoconstriction. J.Allergy Clin.Immunol. 76 (4), 583–590. 1985PubMedCrossRefGoogle Scholar
  135. Peachell, P. T., MacGlashan, D. W., Jr., Lichtenstein, L. M., and Schleimer, R. P. Regulation of human basophil and lung mast cell function by cyclic adenosine monophosphate. J.Immunol. 140 (2), 571–579. 1988PubMedGoogle Scholar
  136. Peachell, P. T., Undem, B. J., Schleimer, R. P., MacGlashan, D. W., Jr., Lichtenstein, L. M., Cieslinski, L. B., and Torphy, T. J. Preliminary identification and role of phosphodies-terase isozymes in human basophils. J.Immunol. 148 (8), 2503–2510. 1992PubMedGoogle Scholar
  137. Pearce, F. L., Befus, A. D., Gauldie, J., and Bienenstock, J. Mucosal mast cells. II. Effects of anti-allergic compounds on histamine secretion by isolated intestinal mast cells. J.Immunol. 128 (6), 2481–2486. 1982Google Scholar
  138. Persson, C. G. and Pauwels, R. Pharmacology of Anti-Asthma Xanthines. (7), 207–225. 1989. Academic Press London.Google Scholar
  139. Pharmacology of Asthma. Page, C. and Barnes, P. J Persson, C. G. A. and Pauwels, R. Pharmacology of anti-asthma xanthines. Page, C. P. and Barnes, P. J. Pharmacology of asthma. (7), 207–225. 1991. Berlin, Springer-Verlag.Google Scholar
  140. Handbook of Experimental Pharmacology. Born, G. V. R., Cuatrecasas, P., and Her-ken, H Peterson, T. C., Slysz, G., and Isbrucker, R. The inhibitory effect of ursodeoxycholic acid and pentoxifylline on platelet derived growth factor-stimulated proliferation is distinct from an effect by cyclic AMP. Immunopharmacology 39 (3), 181–191. 1998CrossRefGoogle Scholar
  141. Platzer, C., Meisel, C., Vogt, K., Platzer, M., and Volk, H. D. Up-regulation of monocytic IL-10 by tumor necrosis factor-alpha and cAMP elevating drugs. Int.Immunol. 7 (4), 517–523. 1995PubMedCrossRefGoogle Scholar
  142. Punnonen, J., Punnonen, K., Jansen, C. T., and Kalimo, K. Interferon (IFN)-alpha, IFNgamma, interleukin (IL)-2, and arachidonic acid metabolites modulate IL-4-induced IgE synthesis similarly in healthy persons and in atopic dermatitis patients. Allergy 48 (3), 189–195. 1993PubMedCrossRefGoogle Scholar
  143. Rivington, R. N., Boulet, L. P., Cote, J., Kreisman, H., Small, D. I., Alexander, M., Day, A., Harsanyi, Z., and Darke, A. C. Efficacy of Uniphyl, salbutamol, and their combination in asthmatic patients on high-dose inhaled steroids. Am.J.Respir.Crit Care Med. 151 (2 Pt 1), 325–332. 1995PubMedGoogle Scholar
  144. Rivkin, I and Neutze, J. A. Influence of cyclic nucleotides and a phosphodiesterase inhibitor on in vitro human blood neutrophil chemotaxis. Arch.Int.Pharmacodyn.Ther. 228 (2), 196–204. 1977PubMedGoogle Scholar
  145. Rossi, A. G., Cousin, J. M., Dransfield, I., Lawson, M. E, Chilvers, E. R., and Haslett, C. Agents that elevate cAMP inhibit human neutrophil apoptosis. Biochem.Biophys.Res.Commun. 217(3), 892–899. 26–12–1995Google Scholar
  146. Sagara, H., Fuiuda, T., Okada, T., Ishikawa, A., and Makino, S. Theophylline at therapeutic concentration suppresses PAF-induced upregulation of Mac-1 on human eosinophils. Clinical and Experimental Allergy, Supplement 26, 16–21. 1996Google Scholar
  147. Scherer, L. J., Diamond, R. A., and Rothenberg, E. V. Developmental regulation of cAMP signaling pathways in thymocyte development. Thymus 23, 231–257. 1994PubMedGoogle Scholar
  148. Schmeichel, C. J. and Thomas, L. L. Methylxanthine bronchodilators potentiate multiple human neutrophil functions. J.Immunol. 138(6), 1896–1903. 15–3–1987Google Scholar
  149. Scordamaglia, A., Ciprandi, G., Ruffoni, S., Caria, M., Paolieri, F., Venuti, D., and Canonica, G. W. Theophylline and the immune response: in vitro and in vivo effects. Clin.Immunol.Immunopathol. 48 (2), 238–246. 1988PubMedCrossRefGoogle Scholar
  150. Sherman, M. S., Lang, D. M., Matityahu, A., and Campbell, D. Theophylline improves measurements of respiratory muscle efficiency. Chest 110 (6), 1437–1442. 1996PubMedCrossRefGoogle Scholar
  151. Shichijo, M., Shimizu, Y., Hiramatsu, K., Inagaki, N., Tagaki, K., and Nagai, H. Cyclic AMP-elevating agents inhibit mite-antigen-induced IL-4 and IL-13 release from basophil-enriched leukocyte preparation. Int.Arch.Allergy Immunol. 114 (4), 348–353. 1997PubMedCrossRefGoogle Scholar
  152. Shohat, B., Volovitz, B., and Varsano, I. Induction of suppressor T cells in asthmatic children by theophylline treatment. Clin.Allergy 13 (5), 487–493. 1983PubMedCrossRefGoogle Scholar
  153. Shute, J. K., Tenor, H., Church, M. K., and Holgate, S. T. Theophylline inhibits the release of eosinophil survival cytokines—Is Raf-1 the protein kinase A target? Clinical Experimental Allergy, Supplement 28 (3), 47–52. 1998Google Scholar
  154. Souness, J. E., Griffin, M., Maslen, C., Ebsworth, K., Scott, L. C., Pollock, K., Palfreyman, M. N., and Karlsson, J. A. Evidence that cyclic AMP phosphodiesterase inhibitors suppress TNFa generation from human monocytes by interacting with a `low-affinity’ phosphodiesterase 4 conformer. Br.J.Pharmacol. 118, 649–658. 1996PubMedCrossRefGoogle Scholar
  155. Spatafora, M., Chiappara, G., Merendino, A. M., D’Amico, D., Bellia, V, and Bonsignore, G. Theophylline suppresses the release of tumour necrosis factor-alpha by blood monocytes and alveolar macrophages. Eur.Respir.J. 7 (2), 223–228. 1994PubMedCrossRefGoogle Scholar
  156. Spina, D., Ferlenga, P., Biasini, I., Moriggi, E., Marchini, E, Semeraro, C., and Page, C. P. The effect duration of selective phosphodiesterase inhibitors in the guinea-pig. Life Sci. 11, 953–965. 1998aCrossRefGoogle Scholar
  157. Spina, D., Landells, L. J., and Page, C. P. The role of phosphodiesterase isoenzymes in health and in atopic disease. August, T. Advances in Pharmacology. 33–89. 1998b. San Diego, Academic Press IncGoogle Scholar
  158. Spoelstra, F. M., Berends, C., Dijkhuizen, B., De Monchy, J. G. R., and Kauffman, H. F. Effect of theophylline on CD1lb and L-selectin expression and density of eosinophils and neutrophils in vitro. European Respiratory Journal 12 (3), 585–591. 1998PubMedCrossRefGoogle Scholar
  159. Steele, T. A. and Brahmi, Z. Phosphatidylinositol metabolism accompanies early activation events in tumor target cell-stimulated human natural killer cells. Cell.Immunol. 112, 402–443. 1988PubMedCrossRefGoogle Scholar
  160. Sullivan, P., Bekir, S., Jaffar, Z., Page, C., Jeffery, P., and Costello, J. Anti-inflammatory effects of low-dose oral theophylline in atopic asthma [published erratum appears in Lancet 1994 Jun 11; 343(8911):15121. Lancet 343 (8904), 1006–1008. 1994PubMedCrossRefGoogle Scholar
  161. Sung, S. S. and Walters, J. A. Increased cyclic AMP levels enhance IL-1 alpha and IL-1 beta mRNA expression and protein production in human myelomonocytic cell lines and monocytes. J.Clin.Invest. 88 (6), 1915–1923. 1991PubMedCrossRefGoogle Scholar
  162. Tenor, H., Hatzelmann, A., Church, M. K., Schudt, C., and Shute, J. K. Effects of theophylline and rolipram on leukotriene C4 (LTC4) synthesis and chemotaxis of human eosinophils from normal and atopic subjects. Br.J.Pharmacol. 118, 1727–1735. 1996PubMedCrossRefGoogle Scholar
  163. Thomas, P., Pugsley, J. A., and Stewart, J. H. Theophylline and salbutamol improve pulmonary function in patients with irreversible chronic obstructive pulmonary disease. Chest 101 (1), 160–165. 1992PubMedCrossRefGoogle Scholar
  164. Thompson, P. B., Daughton, D., and Robbins, G. A. Intramural airway inflammation in chronic bronchitis. Characterization and correlation with clinical parameters. Am.Rev.Respir.Dis. 140, 1527–1537. 1989PubMedCrossRefGoogle Scholar
  165. Tinkelman, D. G., Reed, C. E., Nelson, H. S., and Offord, K. P. Aerosol beclomethasone dipropionate compared with theophylline as primary treatment of chronic, mild to moderately severe asthma in children. Pediatrics 92 (1), 64–77. 1993PubMedGoogle Scholar
  166. Turner, C. R., Esser, K. M., and Wheeldon, E. B. Therapeutic intervention in a rat model of ARDS: IV. Phosphodiesterase IV inhibition. Circ.Shock 39 (3), 237–245. 1993PubMedGoogle Scholar
  167. Ukena, D., Harnest, U., Sakalauskas, R., Magyar, P., Vetter, N., Steffen, H., Leichtl, S., Rathgeb, F., Keller, A., and Steinijans, V. W. Comparison of addition of theophylline to inhaled steroid with doubling of the dose of inhaled steroid in asthma. Eur.Respir.J. 10, 2754–2760. 1997PubMedCrossRefGoogle Scholar
  168. Umut, S., Gemicioglu, B., Yildirim, N., Barlas, A., and Ozuner, Z. Effect of theophylline in chronic obstructive lung disease. Int.J Clin.Pharmacol.Ther.Toxicol. 30 (5), 149–152. 1992PubMedGoogle Scholar
  169. van der Pouw, Kraan, Boeije, L. C., Smeenk, R. J., Wijdenes, J., and Aarden, L. A. Prostaglandin-E2 is a potent inhibitor of human interleukin 12 production. J.Exp.Med. 181 (2), 775–779. 1995Google Scholar
  170. Vanhaesebroeck, B., Jones, G. E., Allen, W. E., Zicha, D., Hooshmand-Rad, R., Sawyer, C., Wells, C., Waterfield, M. D., and Ridley, A. J. Distinct PI(3)Ks mediate mitogenic signalling and cell migration in macrophages. Nat.Cell Biol. 1 (1), 69–71. 1999PubMedCrossRefGoogle Scholar
  171. Vanhaesebroeck, B., Welham, M. J., Kotani, K., Stein, R., Warne, P. H., Zvelebil, M. J., Higashi, K., Volinia, S., Downward, J., and Waterfield, M. D. P110delta, a novel phosphoinositide 3-kinase in leukocytes. Proc.Natl.Acad.Sci.U.S.A 94(9), 4330–4335. 294–1997Google Scholar
  172. Varriale, P. and Ramaprasad, S Aminophylline induced atrial fibrillation. Pacing Clin.Electrophysiol. 16 (10), 1953–1955. 1993PubMedCrossRefGoogle Scholar
  173. Verghese, M. W., McConnell, R. T., Strickland, A. B., Gooding, R. C., Stimpson, S. A., Yarnall, D. P., Taylor, J. D., and Furdon, P. J. Differential regulation of human monocyte-derived TNF alpha and IL-1 beta by type IV cAMP-phosphodiesterase (cAMP-PDE) inhibitors. J.Pharmacol.Exp.Ther. 272 (3), 1313–1320. 1995PubMedGoogle Scholar
  174. Viherluoto, J., Palkama, T., Silvennoinen, O., and Hurme, M. Cyclic adenosine monophosphate decreases the secretion, but not the cell-associated levels, of interleukin-1 beta in lipopolysaccharide-activated human monocytes. Scand.J.Immunol. 34 (1), 121–125. 1991PubMedCrossRefGoogle Scholar
  175. Ward, A. J., McKenniff, M., Evans, J. M., Page, C. P., and Costello, J. F. Theophylline—an immunomodulatory role in asthma? Am.Rev.Respir.Dis. 147 (3), 518–523. 1993PubMedGoogle Scholar
  176. Weinberger, M. and Hendeles, L. Theophylline in asthma. N.Engl.J.Med. 334(21), 1380–1388.23–5–1996Google Scholar
  177. Weston, M. C., Anderson, N., and Peachell, P. T. Effects of phosphodiesterase inhibitors on human lung mast cell and basophil function. Br.J.Pharmacol. 121 (2), 287–295. 1997PubMedCrossRefGoogle Scholar
  178. Wolkove, N., Dajczman, E., Colacone, A., and Kreisman, H. The relationship between pulmonary function and dyspnea in obstructive lung disease. Chest 96 (6), 1247–1251. 1989PubMedCrossRefGoogle Scholar
  179. Yamaguchi, Y., Hayashi, Y., Sugama, Y., Miura, Y., Kasahara, T., Kitamura, S., Torisu, M., Mita, S., Tominaga, A., and Takatsu, K. Highly purified murine interleukin 5 (IL–5) stimulates eosinophil function and prolongs in vitro survival. IL–5 as an eosinophil chemotactic factor. J.Exp.Med. 167(5), 1737–1742. 1–5–1988Google Scholar
  180. Yasui, K., Agematsu, K., Shinozaki, K., Hokibara, S., Nagumo, H., Nakazawa, T., and Komiyama, A. Theophylline induces neutrophil apoptosis through adenosine A2A receptor antagonism. J.Leukoc.Biol. 67 (4), 529–535. 2000aPubMedGoogle Scholar
  181. Yasui, K., Agematsu, K., Shinozaki, K., Hokibara, S., Nagumo, H., Yamada, S., Kobayashi, N., and Komiyama, A. Effects of theophylline on human eosinophil functions: comparative study with neutrophil functions. J.Leukoc.Biol. 68 (2), 194–200. 2000bPubMedGoogle Scholar
  182. Yasui, K., Hu, B., Nakazawa, T., Agematsu, K., and Komiyama, A. Theophylline accelerates human granulocyte apoptosis not via phosphodiesterase inhibition. Journal of Clinical Investigation 100 (7), 1677–1684. 1997PubMedCrossRefGoogle Scholar
  183. Zocchi, M. R., Pardi, R., Gromo, G., Ferrero, E., Ferrero, M. E., Besana, C., and Rugarli, C. Theophylline induced non specific suppressor activity in human peripheral blood lymphocytes. J.Immunopharmacol. 7 (2), 217–234. 1985PubMedCrossRefGoogle Scholar
  184. ZuWallack, R. L., Mahler, D. A., Reilly, D., Church, N., Emmett, A., Rickard, K., and Knobil, K. Salmeterol plus theophylline combination therapy in the treatment of COPD. Chest 119 (6), 1661–1670. 2001PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • N. A. Jones
    • 1
  • C. P. Page
    • 1
  1. 1.The Sackler Institute of Pulmonary Pharmacology, Pharmacology and Therapeutics DivisionGKT School of Biomedical Sciences, King’s College LondonLondonUK

Personalised recommendations