Advertisement

Emissions from Medical Care Units

  • K. Kümmerer

Abstract

After administration, pharmaceuticals are excreted and released into the aquatic environment via wastewater effluent. Unused drugs are sometimes disposed of down drains, and, unless they are biodegraded or eliminated during sewage treatment, traces may enter the aquatic environment and eventually reach drinking water. It is also hypothesised that antibiotics and disinfectants disturb the wastewater treatment process and the microbial ecology in surface waters. Furthermore, resistant bacteria may be selected in the aeration tanks of STPs by the antibiotic substances present.

Keywords

Sewage Sludge Benzalkonium Chloride Cytostatic Agent Hospital Effluent Medical Care Unit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aherne GW, Hardcastle A, Nield AH (1990) Cytotoxic drugs and the aquatic environment. Estimation of bleomycin in river and water samples. J Pharm Pharmacol 42: 741–742Google Scholar
  2. Al-Ahmad A, Kammerer K (2001) Biodegradation of the antineoplastics vindesine, vincristine and vinblastine, and toxicity against bacteria in the aquatic environment. Cancer Det Prey 25: 102–107Google Scholar
  3. Al-Ahmad A, Kammerer K, Schön G (1997) Biodegradation and toxicity of the antineoplastics mitoxantron hydrochloride and treosulfane in the closed bottle test. Bull Env Cont Toxicol 58: 704–711CrossRefGoogle Scholar
  4. Al-Ahmad A, Daschner FD, Kummerer K (1999) Biodegradability of cefotiam, ciprofloxacin, meropenem, penicillin G, and sulfametohoxazole and inhibition of waste water bacteria. Arch Environ Cont Toxicol 37: 158–163CrossRefGoogle Scholar
  5. Al-Ahmad A, Wiedmann-Al-Ahmad M, Schön G, Daschner FD, Kammerer K (2000) The role of Acinetobacter for biodegradability of quaternary ammonium compounds. Bull Env Cont Toxicol 64: 764–770CrossRefGoogle Scholar
  6. Alder AC, McArdell CS, Giger W, Golet EM, Molnar E, Nipales NS (2000) Presentation held at the conference “Antibiotics in the Environment”. CWIEM East Anglian Region, 2 February 2000Google Scholar
  7. Alexy R, Kumpel T, Kammerer K (to be published) Assessment of degradation of 18 antibiotics in the closed bottle testGoogle Scholar
  8. Anderson PO (1990) Chlorofluorocarbons in medicinals. Am J Hosp Pharm 47: 1382–1385Google Scholar
  9. Augustin H, Bauer U, Bessens E, Bestmann G, Botzenhart K, Dietz F, Genth H, Gerike P, Jung KD, Kettrup A, Robra K-H, Zullei N (1982). Mikrozide Wirkstoffe als belastende Verbindungen im Wasser. Vom Wasser 58: 297–335Google Scholar
  10. Bau M, Dulski P (1996) Anthropogenic origin of positive gadolinium anomalies in river waters. Earth Planet Sci Lett 143: 245–55CrossRefGoogle Scholar
  11. Bayer AG (1991) Aerobic metabolism of 14C-ciprofloxacin in an aquatic model ecosystem. Bayer PF-Report 3539, 29 July 1991Google Scholar
  12. Bayer AG (1995) Preventol R5o, preventol R8o - summary of toxicity and ecotoxicity. Technical Information. January 1995Google Scholar
  13. Benbrook CM (2002) Antibiotic drug use in US aquaculture. (http://www.iatp.org/library/antibiotics) Burhenne J, Ludwig M, Nikoloudis P, Spiteller M (1997a) Photolytic degradation of fluoroquinolone carboxylic acids in aqueous solution. Primary photoproducts and half-lives. Environ Sci Pollut R 4:10–15Google Scholar
  14. Burhenne J, Ludwig M, Spiteller M (1997b) Photolytic degradation of fluoroquinolone carboxylic acids in aqueous solution. Isolation and structural elucidation of polar photometabolites. Environ Sci Pollut R 4: 61–71Google Scholar
  15. Cooper JC (1988) Review of the environmental toxicity of quaternary ammonium halides. Ecotox Environ Safe 16: 65–71CrossRefGoogle Scholar
  16. Craig PJ (1986) Organomercury compounds in the environment. In: Craig PJ (ed) Organometallic components in the environment. Principles and reactions. Longman Group Ltd, HarlowGoogle Scholar
  17. De Smedt SC, Meyvis TKL, van Oostveldt P, Demeester J (1999) A new microphotolysis based approach for mapping the mobility of drugs in microscopic drug delivery devices. Pharm Res 16: 1631–1639Google Scholar
  18. Drewes, JE, Jekel M (1997) Untersuchungen zum Verhalten organischer Abwasserinhaltsstoffe bei der Wiederverwendung kommunaler Kläranlagenabläufe zur künstlichen Grundwasseranreicherung. gwf Wasser Abwasser 138: 223–224Google Scholar
  19. ECETOC (ed) (1993) DHTMAC – aquatic and terrestrial hazard assessment. CAS No. 61789–80–9. Euro– pean Center for Ecotoxicology and Toxicology of Chemicals, Brussels (Technical Report No. 53 )Google Scholar
  20. Erbe T, Kämmerer K, Daschner FD (1997) Antibitotika in der aquatischen Umwelt. Erhebung des Antibiotikaverbrauchs für die Bereiche Krankenhaus, Praxis und Tierhaltung unter dem Aspekt der Resistenzentwicklung in der aquatischen Umwelt. Freiburg (internal report )Google Scholar
  21. Erbe T, Kämmerer K, Gartiser S, Brinker L (1998) Röntgenkontrastmittel, Quelle für die AOX-Belastung durch Krankenhäuser. Fortschr Röntgenstr 169: 420–423Google Scholar
  22. FEDESA (European Federation of Animal Health) (1997) FEDESA press release, 6 September, Brussels FEDESA (European Federation of Animal Health) (2001) Antibiotic use in farm animals does not threaten human health. FEDESA/FEFANA press release, 13 July, BrusselsGoogle Scholar
  23. Falter R, Wilken R-D (1998) Determination of rare earth elements by ICP-MS and ultrasonic nebulization in sludges of water treatment facilities. Vorn Wasser 90: 57–64Google Scholar
  24. Färber H (2002) Antibiotika im Krankenhausabwasser. Hyg Med 27: 35Google Scholar
  25. Gartiser S, Brinker L, Uhl A, Willmund R, Kämmerer K, Daschner F (1994) Untersuchung von Krankenhausabwasser am Beispiel des Universitätsklinikums Freiburg. Korresp Abw, 49: 1618–1624Google Scholar
  26. Gerike P (1982) Bioelimination von kationischen Tensiden. Tenside Deterg 19: 162–164Google Scholar
  27. Guhl W, Gode P (1989) Störungen der Funktion biologischer Kläranlagen durch Chemikalien: Vergleich der Grenzkonzentration mit Ergebnissen im Sauerstoffzehrungstest. Vom Wasser 72: 165–173Google Scholar
  28. Guitton J, Burronfosse T, Sanchez M, Desage M (1997) Quantification of propofol. Anal Lett 30: 1369–1378CrossRefGoogle Scholar
  29. Hahn M, Liebau A, Rüttinger HH, Thamm R (1994) Electrochemical investigation of chloramine T. Anal Chim Act 289: 35–42CrossRefGoogle Scholar
  30. Haiß A (2002) Thesis, Humboldt Universität, Berlin Haiß A, Kämmerer K (to be published) Biodegradability of the ionic iodinated X-ray contrast compound amidotrizoic acid, identification of its aerobic biodegradation products and their effects against sewage sludge micro-organismsGoogle Scholar
  31. Haiß A, Hubner P, Zipfel J, Kämmerer K (1998) AOX im Abwasser europäischer Kliniken. Vom Wasser 91: 315–323Google Scholar
  32. Hailing-Sorensen B, Holten-Lützhoft H-C, Andersen H R, Ingerslev F (2000) Environmental risk assessment of antibiotics: comparison of mecillinam, trimethoprim and ciprofloxacin. J Antimicrob Chemother 46 (Suppl 1): 53–58Google Scholar
  33. Hammond CR (1995) Gadolinium. In: Lide DR (ed) CRC handbook of chemistry and physics, 78th edn. CRC Press Inc., Boca Raton, FloridaGoogle Scholar
  34. Hartmann A, Alder AC, Koller T, Widmer R (1998) Identification of fluorochinolone antibiotics as the main source of umuC genotoxicity in native hospital waste water. Environ Toxicol Chem 17: 383–393CrossRefGoogle Scholar
  35. Helmers E, Kämmerer K (1999) Anthropogenic platinum fluxes: quantification of sources and sinks, and outlook. Environ Sci Pollut R 6: 29–36CrossRefGoogle Scholar
  36. Hingst V, Klippel KM, Sonntag H-G (1995) Untersuchungen zu Epidemiologie mikrobieller Biozidresistenzen. Zbl Hyg 197: 232–251Google Scholar
  37. Hirsch R (2000) Occurrence and behaviour of X-ray contrast media in sewage facilities and the aquatic environment. Environ Sci Technol 34: 2741–2748CrossRefGoogle Scholar
  38. Hirsch R, Ternes T, Haberer K, Kratz KL (1999) Occurrence of antibiotics in the aquatic environment. Sci Total Environ 225: 109–118CrossRefGoogle Scholar
  39. Hübener B, Dornberger K, Zielke R, Gräfe U (1992) Microbial degradation of cyclosporin A. UWSF–Z Umweltchem Okotox 4: 227–230CrossRefGoogle Scholar
  40. Hubner P (2001) Emissions from clinical chemical laboratories. In: Kämmerer K (ed) Pharmaceuticals in the environment. Sources, fate, effects and risks. Springer-Verlag, Heidelberg New York, pp 43–48Google Scholar
  41. Hubner P, Mersch-Sundermann V, Bulowski I, Nahkur E, Kämmerer K (2001) Mutagene Effekte und biologische Abbaubarkeit von flüssigen Reaktionsrückständen aus Analysatoren der in-vitro Diagnostik klinisch chemischer Routinelaboratorien. Vom Wasser 96: 15–28Google Scholar
  42. IKSR (1994) Aktionsprogramm Rhein. Vergleich der Gewässergüte des Rheins mit den Zielvorgaben 1990–1993 - Zwischenbilanz. Internationale Kommission zum Schutz des Rheins, Technisch-wissenschaftliches Sekretariat, KoblenzGoogle Scholar
  43. Janosz-Rajczyk M (1992) Biodegradation of alkyldipolyethoxybenzylammoniumchloride. Tenside Surf Det 29: 436–441Google Scholar
  44. Kalsch W (1999) Biodegradation of the iodinated X-ray contrast media diatrizoate and iopromide. Sci Total Environ 225: 143–153CrossRefGoogle Scholar
  45. Kamphues J, Hebeler D (1999) Leistungsförderer–der Status Quo aus Sicht der Tierernährung. Übers Tierernähr 27: 1–28Google Scholar
  46. Koppe P, Stozek A (1993) Kommunales Abwasser - Seine Inhaltsstoffe nach Herkunft, Zusammensetzung und Reaktionen im Reinigungsprozeß einschließlich Klärschlämme. Vulkan-Verlag, EssenGoogle Scholar
  47. Kämmerer K (1998) Eintrag von Pharmaka, Diagnostika und Desinfektionsmitteln aus Krankenhäusern in die aquatische Umwelt. Habilitationschrift. Universität Freiburg.Google Scholar
  48. Kämmerer K (2001) Drugs in the environment: Emission of drugs, diagnostic aids, and disinfectants into wastewater by hospitals in relation to other sources–a review. Chemosphere 45: 957–969CrossRefGoogle Scholar
  49. Kämmerer K, Al-Ahmad A (1997) Biodegradability of the anti-tumour agents 5-fluorouracil, cytarabine and gemcitabine: Impact of the chemical structure and synergistic toxicity with hospital effluents. Acta hydrochim. hydrobiol 25: 166–172Google Scholar
  50. Kämmerer K, Al-Ahmad A (1998) The cancer risk for humans related to cyclophoshamide and ifosfamide excretions emitted into surface water via hospital effluents. Cancer Det Prey 22 (Suppl 1): 136Google Scholar
  51. Kämmerer K, Al-Ahmad A (1999) Epirubicinhydrochlorid in der aquatischen Umwelt - Biologische Abbaubarkeit und Wirkung auf aquatische Bakterien. 7. Nordwestdeutscher Zytostatika-Workshop, Hamburg-Harburg 29.-31. 01. 1999 (Proceedings, pp io-si)Google Scholar
  52. Kämmerer K, Helmers E (moo) Hospitals as a source of gadolinium in the aquatic environment. Environ Sci Technol 34: 573–577Google Scholar
  53. Kämmerer K, Henninger A (2003) Promoting resistance by the emission of antibiotics from hospitals and households into effluents. Clin Microbiol Inf 9: 1203–1214CrossRefGoogle Scholar
  54. Kämmerer K, Al-Ahmad A, Steger-Hartmann T (1996) Verhalten des Zytostatikums Epirubicin-Hydrochlorid in der aquatischen Umwelt–erste Ergebnisse. Umweltmed Forsch Prax 1: 133–137Google Scholar
  55. Kämmerer K, Steger-Hartmann T, Meyer M (1997a) Biodegradability of the anti-tumour agent ifosfamide and its occurrence in hospital effluents and sewage. Wat Res 31: 2705–2710CrossRefGoogle Scholar
  56. Kämmerer K, Eitel A, Braun U, Hubner P, Daschner F, Mascart G, Milandri M, Reinthaler F, Verhuef J (1997b) Analysis of benzalkonium chloride in the effluent from European hospitals by solid-phase extraction and HPLC with post-column ion-pairing for fluorescence detection. J Chromatogr A 774: 281–286CrossRefGoogle Scholar
  57. Kämmerer K, Wallenhorst T, Kielbassa A (1997c) Mercury emissions from dental chairs and their reduction. Chemosphere 35: 827–833.CrossRefGoogle Scholar
  58. Kämmerer K, Erbe T, Gartiser S, Brinker L (1998) AOX-Emissions from hospitals into municipal waste water. Chemosphere 36: 2437–2445CrossRefGoogle Scholar
  59. Kämmerer K, Helmers E, Hubner P, Mascart G, Milandri M, Reinthaler F, Zwakenberg M (1999) European hospitals as a source for platinum in the environment: emissions with effluents–concentrations, amounts and comparison with other sources. Sci Total Environ 225: 155–165CrossRefGoogle Scholar
  60. Kammerer K, Al-Ahmad A, Bertram B, Wießler M (2000a) Biodegradability of antineoplastic compounds in screening tests: improvement by glucosidation and influence of stereo-chemistry. Chemosphere 40: 767–773CrossRefGoogle Scholar
  61. Kämmerer K, Al-Ahmad A, Mersch-Sundermann V (2000b): Biodegradability of some antibiotics, elimination of their genotoxicity and affection of waste water bacteria in a simple test. Chemosphere 40: 701–710CrossRefGoogle Scholar
  62. Kämmerer K, Al-Ahmad A, Henninger A (2002) Use of chemotaxonomy to study the influence of benzalkonium chloride on bacterial populations in biodegradation testing. Acta Hydroch Hydrob 30: 171–178CrossRefGoogle Scholar
  63. Leppold J (1997) Bestimmung von chemischem Sauerstoffbedarf und Schwermetallen im Abwasser europäischer Kliniken. Diploma thesis. University for Applied Sciences, Albstadt-SigmaringenGoogle Scholar
  64. Lustig S, Schierl R, Alt F, Helmers E, Kämmerer K (1997) Statusbericht: Deposition und Verteilung anthropogen emittierten Platins in den Umweltkompartimenten in Bezug auf den Menschen und sein Nahrungsnetz. UWSF - Z Umweltchem Ökotox 9: 149–151Google Scholar
  65. Marengo JR, Kok RA, Velagaleti R, Stamm JM (1997) Aerobic degradation of “C-sarafloxacin hydrochloride in soil. Environ Toxicol Chem 16: 462–471Google Scholar
  66. Mellon M, Benbrook C, Benbrook KL (2001) Hogging it: estimates of antimicrobial use in livestock. Union of Concerned Scientists (http://www.ucsusa.org/publications)
  67. Möller P, Dulski P, Bau M, Knappe A, Pekdeger A, Sommer-von Jarmerasted C (200o) Anthropogenic gadolinium as a conservative tracer in hydrology. J Geochem Explor 69/70:409–414Google Scholar
  68. Nycomed (1995) Environmental data sheet omniscan. Ismaning bei MünchenGoogle Scholar
  69. Ohlsen K, Ternes T, Werner G, Löf ler D, Witte W, Hacker J (2003) Bedeutung von Antibiotika in Krankenhausabwässern. In: Track T, Kreysa G (eds) Spurenstoffe in Gewässern. Pharmazeutische Reststoffe und endokrin wirksame Substanzen. Wiley-VCH, Weinheim, pp 197–209Google Scholar
  70. Oleksy-Frenzel J, Wischnack S, Jekel M (1995) Bestimmung der oganischen Gruppenparameter AOC1, AOBr und AOJ in Kommunalabwasser. Vom Wasser 85: 59–68Google Scholar
  71. Russell AD, Hugo WB, Ayliffe GAJ (1992) Principles and practice of disinfection, preservation and sterilization, end edn. Blackwell Scientific Publications, OxfordGoogle Scholar
  72. Schecker J, Al-Ahmad A, Bauer MJ, Zellmann H, Kämmerer K (1998) Elimination des Zytostatikums Ifosfamid während der simulierten Zersetzung von Hausmüll im Labormaßstab. UWSF–Z Umweltchem Ökotox 10: 339–344CrossRefGoogle Scholar
  73. Schulz S, Hahn HH (1997) Der Kanal als Reaktor–Untersuchungen zur AOX-Bildung durch Wirkstoffe in Reinigungsmitteln. gwf Wasser Abwasser 138: 109–120Google Scholar
  74. Skov T, Lynge E, Maarup B, Olsen J, Roth M, Withereik H (1990) Risks for physicians handling antineoplastic drugs. Lancet 336: 1446CrossRefGoogle Scholar
  75. Steger-Hartmann T, Kämmerer K, Schecker J (1996) Trace analysis of the antineoplastics ifosfamide and cyclophosphamide in sewage water by two step solid phase extraction and GC/MS. J Chromatogr A 726: 179–184CrossRefGoogle Scholar
  76. Steger-Hartmann T, Kämmerer K, Hartmann A (1997) Biological degradation of cyclophosphamide and its occurrence in sewage water. Ecotox Environ Safe 36: 174–179CrossRefGoogle Scholar
  77. Steger-Hartmann T, Länge R, Schweinfurth H (1999) Environmental risk assessment for the widely used iodinated X-ray contrast agent iopromide ( Ultravist ). Ecotox Environ Safe 42: 274–281Google Scholar
  78. Tubbing DMJ, Admiraal W (1991) Inhibition of bacterial and phytoplanktonic metabolic activity in the lower river Rhine by ditallowdimethylammonium chloride. Appl Environ Microb 57: 3616–3622Google Scholar
  79. Union of Concerned Scientists (2001) 7o percent of all antibiotics given to healthy lifestock. Press Release, 8 January, Cambridge, MAGoogle Scholar
  80. Vivian CMG (1986) Rare earth element content of sewage sludges dumped at sea in Liverpool Bay, U.K. Environ Techn Lett 7: 593–596CrossRefGoogle Scholar
  81. Wagner R, Kayser G (1991) Laboruntersuchungen zum Einfluß von mikrobiziden Stoffen in Verbindung mit wasch-und reinigungsmittelrelevanten Substanzen sowie von Tensidabbauprodukten auf die Nitrifikation. Projekt Wasser-Abfall-Boden, Baden-Württemberg, Förderkennzeichen 88 068, Stuttgart and KarlsruheGoogle Scholar
  82. Weerasinghe CA, Towner D (1997) Aerobic biodegradation of virginiamycin in soil. Environ Toxicol Chem 16: 1873–1876CrossRefGoogle Scholar
  83. Wiethan J, Al-Ahmad A, Henninger A, Kämmerer K (2000) Simulation des Selektionsdrucks der Antibiotika Ciprofloxacin und Ceftazidim in Oberflächengewässern mittels klassischer Methoden. Vom Wasser 95: 107–118Google Scholar
  84. Winckler C, Grafe A (2000) Charakterisierung und Verwertung von Abfällen aus der Massentierhaltung unter Berücksichtigung verschiedener Böden. Umweltbundesamt, Berlin (Texte 44/00)Google Scholar
  85. Wise R (2002) Antimicrobial resistance: priorities for action. J Antimicrob Chemother 49: 585–586CrossRefGoogle Scholar
  86. Ziegler M, Schulze Karal C, Steiof M, Rüden H (1997) Reduzierung der AOX-Fracht von Krankenhäusern durch Minimierung des Eintrags iodorganischer Röntgenkontrastmittel. Korresp Abw 44: 1404–1408Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • K. Kümmerer

There are no affiliations available

Personalised recommendations