Effects of Ethinyloestradiol and Methyltestosterone in Prosobranch Snails

  • U. Schulte-Oehlmann
  • M. Oetken
  • J. Bachmann
  • J. Oehlmann


Recent reports have shown that a number of pharmaceuticals do occur not only in raw sewage but also in effluents of sewage treatment works, sewage sludge and receiving surface waters (Daughton and Ternes 1999; Kümmerer 2001). The list of pharmaceuticals detected in aquatic ecosystems is steadily increasing while almost nothing is known regarding their potential effects on aquatic wildlife. Although concentrations of pharmaceuticals in the aquatic environment are generally in the lower ng l−1 and μg l−1 range, it has to be considered that these compounds were developed to exhibit a high biological activity, often associated with a high stability so that they are not readily biodegradable. Therefore, concerns have been raised regarding the potential impact from such compounds on aquatic wildlife even at the low reported environmental concentrations because of unknown safety factors and because accumulating compounds may attain much higher concentrations in organisms than in the water phase.


Synthetic Steroid Test Concentration Range Aquatic Wildlife Penis Sheath Prosobranch Snail 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Belfroid AC, Van der Horst A, Vethaak AD, Schafer AJ, Rijs GBJ, Wegener J, Cofino WP (1999) Analysis and occurrence of estrogenic hormones and their glucuronides in surface water and waste water in The Netherlands. Sci Total Environ 225: 101–108CrossRefGoogle Scholar
  2. Blâzquez M, Zanuy S, Carrillo M, Piferrer F (1998) Structural and functional effects of early exposure to estradiol-17ß and 17a-ethynylestradiol on the gonads of the gonochoristic teleost Dicentrarchus labrax. Fish Physiol Biochem 18: 37–47CrossRefGoogle Scholar
  3. Bögi C, Levy G, Lutz I, Kloas W (2002) Functional genomics and sexual differentiation in amphibians. Comp Biochem Phys B 133. 559–570CrossRefGoogle Scholar
  4. Czech P, Weber K, Dietrich DR (2001) Effects of endocrine modulating substances on reproduction in the hermaphroditic snail Lymnaea stagnalis L. Aquat Toxicol 33: 103–114CrossRefGoogle Scholar
  5. Daughton CG, Ternes TA (1999) Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ Health Perspect 107 (Supp16): 907–938CrossRefGoogle Scholar
  6. Duft M, Schulte-Oehlmann U, Tillmann M, Markert B, Oehlmann J (2003a) Toxicity of triphenyltin and tributyltin to the freshwater mudsnail Potamopyrgus antipodarum in a new sediment biotest. Environ Toxicol Chem 22: 145–152Google Scholar
  7. Duft M, Schulte-Oehlmann U, Weltje L, Tillmann M, Oehlmann J (2003b) Stimulated embryo production as a parameter of estrogenic exposure via sediments in the freshwater mudsnail Potamopyrgus antipodarum. Aquat Toxicol 64: 437–449CrossRefGoogle Scholar
  8. Fujioka Y (2002) Effects of hormone treatments and temperature on sex-reversal of Nigorobuna Carassius carassius grandoculis. Fish Sci 68: 889–893CrossRefGoogle Scholar
  9. Hailing-Sorensen B, Nors Nielsen S, Lanzky PF, Ingerslev F, Holten-Lützhoft HC, Jorgensen SE (1998) Occurrence, fate and effects of pharmaceutical substances in the environment–a review. Chemosphere 36: 357–393CrossRefGoogle Scholar
  10. Jobling S, Sheahan D, Osborne JA, Matthiessen P, Sumpter JP (1996) Inhibition of testicular growth in rainbow trout (Oncorhynchus mykiss) exposed to estrogenic alkylphenolic chemicals. Environ Toxicol Chem 15: 194–202Google Scholar
  11. Kämmerer K (ed) (2001) Pharmaceuticals in the environment. Sources, fate, effects and risks. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  12. Linke O (1933) Morphologie and Physiologie des Genitalapparates der Nordseelittorinen. Wiss Meeres-unters Abt Helgoland 19: 1–60Google Scholar
  13. Lozân JL (1992) Angewandte Statistik für Naturwissenschaftler. Parey, Berl in HamburgGoogle Scholar
  14. Matta MB, Cairncross C, Kocan RM (1998) Possible effects of polychlorinated biphenyls on sex determination in rainbow trout. Environ Toxicol Chem 17: 26–29CrossRefGoogle Scholar
  15. Mensink BP, Everaarts JM, Kralt H, ten Hallers-Tjabbes CC, Boon JP (1996) Tributyltin exposure in early life stages induces the development of male sexual characteristics in the common whelk, Buccinum undatum. Mar Environ Res 42: 151–154Google Scholar
  16. Oehlmann J, Schulte-Oehlmann U (2003) Endocrine disruption in invertebrates. Pure Appl Chem 75: 2207–2218CrossRefGoogle Scholar
  17. Oehlmann J, Schulte-Oehlmann U, Tillmann M, Markert B (2000) Effects of endocrine disruptors on prosobranch snails (Mollusca: Gastropoda) in the laboratory. Part I: Bisphenol a and octylphenol as xeno-estrogens. Ecotoxicology 9: 383–397CrossRefGoogle Scholar
  18. O’Sullivan AJ, Kennedy MC, Casey JH, Day RO, Corrigan B, Wodak AD (2000) Anabolic-androgenic steroids: Medical assessment of present, past and potential users. Med J Australia 173: 323–327Google Scholar
  19. Quaglino AE, Craig-Veit CB, Viant MR, Erichsen AL, Fry DM, Millam JR (2002) Oral estrogen masculinizes female zebra finch song system. Horm Behav 41: 236–241CrossRefGoogle Scholar
  20. Schulte-Oehlmann U, Benin C, Fioroni P, Oehlmann J, Stroben E (1995) Marisa cornuarietis (Gastropoda, Prosobranchia): a potential TBT bioindicator for freshwater environments. Ecotoxicology 4: 372–384CrossRefGoogle Scholar
  21. Schulte-Oehlmann U, Watermann B, Tillmann M, Scherf S, Markert B, Oehlmann J (2000) Effects of endocrine disruptors on prosobranch snails (Mollusca: Gastropoda) in the laboratory. Part II: Triphenyltin as a xeno-androgen. Ecotoxicology 9: 399–412CrossRefGoogle Scholar
  22. Schulte-Oehlmann U, Markert B, Oehlmann J (2ooia) Development of a biotest with Marisa cornuarietis (Gastropoda: Prosobranchia) for the assessment of environmental chemicals with sex hormone-mimicking effects. Federal Environmental Agency, Berlin (final report, R+D project 297 65 001/04)Google Scholar
  23. Schulte-Oehlmann U, Tillmann M, Casey D, Duft M, Markert B, Oehlmann J (2001b) Östrogenartige Wirkungen von Bisphenol a auf Vorderkiemerschnecken (Mollusca: Gastropoda: Prosobranchia). UWSF–Z Umweltchem Okotox 13: 319–333CrossRefGoogle Scholar
  24. Ternes TA (1998) Occurrence of drugs in German sewage treatment plants and rivers. Wat Res 32: 3245–3260CrossRefGoogle Scholar
  25. Ternes TA, Hirsch R, Stumpf M, Eggert T, Schuppert B, Haberer K (1999) Nachweis and Screening von Arzneimittelrückständen, Diagnostika and Antiseptika in der aquatischen Umwelt. ESWE, Wiesbaden (final report, BMBF R+D project o2WU9567/3)Google Scholar
  26. Vandenbergh GF, Adriaens D, Verslycke T, Janssen CR (2003) Effects of 17a-ethinylestradiol on sexual development of the amphipod Hyalella azteca. Ecotox Environ Safe 54: 216–222CrossRefGoogle Scholar
  27. Watts MM, Pascoe D, Carroll K (2003) Exposure to 17a-ethinylestradiol and bisphenol a–effects on larval moulting and mouthpart structure of Chironomus riparius. Ecotox Environ Safe 54: 207–215CrossRefGoogle Scholar
  28. Williams RJ, Jürgens MD, Johnson AC (1999) Initial predictions of the concentrations and distribution of 17ß-oestradiol, oestrone and ethinyl oestradiol in 3 English rivers. Wat Res 33: 1663–1667CrossRefGoogle Scholar
  29. Williams RJ, Johnson AC, Smith JJL, Kanda R (2003) Steroid estrogens profiles along river stretches arising from sewage treatment works discharges. Environ Sci Technol 37: 1744–1750CrossRefGoogle Scholar
  30. Wilson JG, Wilson HC (1943) Reproductive capacity in adult rats treated prepubertally with androgenic hormone. Endocrinology 33. 350–353CrossRefGoogle Scholar
  31. Young WF, Whitehouse P, Johnson I, Sorokin N (2002) Proposed predicted-no-effect-concentrations (PNECs) for natural and synthetic steroid oestrogens in surface waters. Environment Agency, Bristol (Research and Development, Technical Report P2-To4/1)Google Scholar
  32. Zerulla M, Länge R, Steger-Hartmann T, Panter G, Hutchinson T, Dietrich DR (2002) Morphological sex reversal upon short-term exposure to endocrine modulators in juvenile fathead minnow (Pimephales promelas). Toxicol Lett 131: 51–63CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • U. Schulte-Oehlmann
  • M. Oetken
  • J. Bachmann
  • J. Oehlmann

There are no affiliations available

Personalised recommendations