Skip to main content

Stoffwechsel und Transport von Glucose und FDG

  • Chapter
PET in der Onkologie

Zusammenfassung

Die Kinetik des Radiopharmakons 2 [l8F]-2-Fluor-2-desoxy-D-glucose (2-[l8F18]-FDG, einem Glucose-derivat, wird durch die Verteilung in der Blutbahn, die Gewebsverteilung und den Metabolismus bestimmt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Baldwin SA, Kan O, Whetton AD et al. (1994) Regulation of the glucose transporter Glut-i in mammalian cells. Biochem Soc Trans 22: 814–817

    PubMed  CAS  Google Scholar 

  • Becker G, Piert M, Bares R, Machulla HJ (1998) Konzentrationsabhängigkeit des Transports von 3-[l8F] FDG in der Schweineleber. Nuklearmedizin 37: 68

    Google Scholar 

  • Bell Gl, Burant CF, Takeda J, Gould GW (1993) Structure and function of mammalian facultative sugar transporters. J Biol Chem 268: 19161–19164

    PubMed  CAS  Google Scholar 

  • Bissonnette P, Gagné H, Coady MJ, Benabdallah K, Lapointe JY, Berteloot A (1996) Kinetic separation and characterization of three sugar transport modes in Caco-2 cells. American J Physiol 270: G833–G843

    CAS  Google Scholar 

  • Brown RS, Fisher SJ, Wahl RL (1993) Autoradiographic evaluation of the intra-tumoral distribution of 2-deoxy-D-glucose and monoclonal antibodies in xenografts of human ovarian adenocarcinoma. J Nucl Med 34: 75–82

    PubMed  CAS  Google Scholar 

  • Brown RS, Wahl RL (1993) Overexpression of glut-i glucose transporter in human breast cancer. Cancer 72: 2979–2985

    Article  PubMed  CAS  Google Scholar 

  • Devaskar SU, Mueckler MM (1992) The mammalian glucose transporters. Pediatr Res 31: 1–13

    Article  PubMed  CAS  Google Scholar 

  • Elsas LJ, Longo N (1992) Glucose transporters. Ann Rev Med 43: 377–393

    Article  PubMed  CAS  Google Scholar 

  • Fischmann AJ, Alpert NM (1993) FDG-PET in oncology: there’s more to it than looking at pictures. J Nucl Med 34: 6–11

    Google Scholar 

  • Flier JS, Mueckler MM, Usher P, Lodish HF (1987) Elevated levels of glucose transport and transporter messenger RNA are induced by ras or src oncogenes. Science 235: 1492–1495

    Article  PubMed  CAS  Google Scholar 

  • Fukunaga T, Enomoto K, Okazumi S, Isono K (1993) Analysis of glucose metabolism in patients with esophageal cancer by FDG-PET: estimation of hexokinase activity in the tumor and prediction of prognosis: clinical PET in oncology. Proceedings 2nd Intl Symposium on PET in Oncology, Singapore, World Scientific, PP 87–90

    Google Scholar 

  • Gallagher BM, Fowler JS, Gutterson NI, MacGregor RR, Wan CN, Wolf AP (1978) Metabolic trapping as a principle of radiopharmaceutical design: some factors responsible for the biodistribution of [l8F] 2-deoxy-2-fluoro-D-glucose. J Nucl Med 19: 1154–1161

    PubMed  CAS  Google Scholar 

  • Graham MM, Spence AM, Muzi M, Abbott GL (1989) Deoxyglucose kinetics in a rat brain tumor. J Cereb Blood Flow Metab 9: 315–322

    Article  PubMed  CAS  Google Scholar 

  • Gatenby RA (1995) Potential role of FDG-Pet imaging in understanding tumor-host interaction. J Nucl Med 36: 839–899

    Google Scholar 

  • Hatanaka M, Augl C, Gilden RV (1970) Evidence for a functional change in the plasma membrane of murine sarcoma virus-infected mouse embryo cells. Transport and transport-associated phosphorylation of 14C-2-deoxy-D-glucose. J Biol Chem 245: 714–717

    PubMed  CAS  Google Scholar 

  • Hediger MA, Rhoads DB (1994) Molecular physiology of sodium-glucose cotransporters. Physiol Rev 74: 993–1026

    PubMed  CAS  Google Scholar 

  • Henze E, Knapp H, Meyer GJ, Müller S (1994) 5: Prinzipien der Diagnostik. In: Bull U, Schicha H, Biersack HJ, Knapp WH, Reiners C, Schober O (Hrsg) Nuklearmedizin. Thieme, Stuttgart New York, S 114–138

    Google Scholar 

  • Huang SC, Phelps ME (1986) Principles of tracer kinetic modeling in positron emission tomography and autoradiography. In: Phelps ME, Maziotta JC, Schelbert HR (eds) Positron emision tomography and autoradiography: principles and applications for the brain and heart. Raven, New York

    Google Scholar 

  • Ismail-Beigi F (1993) Metabolic regulation of glucose transport. J Membr Biol 135: 1–10

    PubMed  CAS  Google Scholar 

  • James DE (1994) Targeting of the insulin-regulatable glucose transporter (GLUT-4). Biochem Soc Trans 22: 668–670

    PubMed  CAS  Google Scholar 

  • Keys JW Jr (1995) SUV: standard uptake or silly useless value? J Nucl Med 36: 1836–1839

    Google Scholar 

  • Larson SM, Weiden PL, Grunbaum Z et al. (1981) Positron imaging feasibility studies. II: Characteristic of deoxyglucose uptake in rodent and canine neoplasms: concise communication. J Nucl Med 22: 875–879

    PubMed  CAS  Google Scholar 

  • Lindholm P, Leskinen-Kallio S, Kirvela O et al. (1994) Head and neck cancer: effect of food ingestion on uptake of C-11 methionine. Radiology 193: 863–867

    Google Scholar 

  • Lowe VJ, Hoffmann JM, DeLong DM et al. (1994) Semiquantitativ and visual analysis of FDG-PET images in pulmonary abnormalities. J Nucl Med 35: 1771–1776

    PubMed  CAS  Google Scholar 

  • Lodish HF (1986–87) Anion-exchange and glucose transport proteins: structure, function and distribution. Harvey Lect 82:19–46

    PubMed  CAS  Google Scholar 

  • Lowe VJ, Hoffmann JM, DeLong DM et al. (1994) Semiquantitativ and visual analysis of FDG-PET images in pulmonary abnormalities. J Nucl Med 35: 1771–1776

    PubMed  CAS  Google Scholar 

  • McGowan KM, Long SD, Pekala PH (1995) Glucose transporter gene expression: regulation of transcription and mRNA stability. Pharmacol Ther 66: 465–505

    Article  PubMed  CAS  Google Scholar 

  • Mellanen P, Minn H, Grénman R, Härkönen P (1994) Expression of glucose transporters in head-and-neck tumors. Int J Cancer 56: 622–629

    Article  PubMed  CAS  Google Scholar 

  • Mertens J, Terriere D (1993) 3-radioiodo-phloretin — a new potential radioligand for in vivo measurement of glut proteins: a SPECT alternative for [l8F]FDG. J Nucl Biol Med 37: 158–159

    Google Scholar 

  • Minn H, Zasadny KR, Quint LE et al. (1995) Lung cancer: reproducibility of quantitative measurements for evaluating 2-[F-18]-fluoro-2-deoxy-D-glucose uptake at PET. Radiology 196: 167–173

    PubMed  CAS  Google Scholar 

  • Minn H, Nuutila P, Lindholm P et al. (1994) In vivo effect of insulin on tumor and skeletal muscle glucose metabolism in patients with lymphoma. Cancer 73: 1490–1498

    Article  PubMed  CAS  Google Scholar 

  • Minn H, Kangas L, Knuutila V, Paul R, Sipilä H (1991) Determination of 2-fluoro-2-deoxy-D-glucose uptake and ATP level for evaluating drug effects in neoplastic cells. Res Exp Med 191: 27–35

    Article  CAS  Google Scholar 

  • Monakhov NK, Neistadt EL, Shavlovskii MM et al. (1978) Physico-chemical properties and isoenzyme composition of hexokinase from normal and malignant human tissues. J Natl Cancer Inst 61: 27–34

    PubMed  CAS  Google Scholar 

  • Mueckler M (1994) Facilitative glucose transporters. Int J Biochem 219: 713–725

    CAS  Google Scholar 

  • Nishioka T, Oda Y, Seino Y et al. (1992) Distribution of the glucose transporters in human brain tumors. Cancer Res 52: 3972–3979

    PubMed  CAS  Google Scholar 

  • Oehr P, Ruhlmann J, Rink H (1998) 18F-FDG Transport: Abhängigkeit von Glucosekonzentration und Strahlendosis. Nuklearmedizin 37: 68

    Google Scholar 

  • Patlak CS, Blasberg RG (1985) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalisations. J Cereb Blood Flow Metab 5: 584–590

    Article  PubMed  CAS  Google Scholar 

  • Phelps ME, Huang SC, Hoffmann EJ (1979) Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18) 2-fluoro-2-deoxy-D-glucose: validation of method. Ann Neurol 6: 371–388

    Article  PubMed  CAS  Google Scholar 

  • Römer W, Avril N, Schwaiger M (1997) Einsatzmöglichkeiten der Positronen-Emissions-Tomographie beim Mammakarzinom. Acta Med Austriaca 24: 60–62

    PubMed  Google Scholar 

  • Sokoloff L, Reivich M, Kennedy C et al. (1977) The [14C]-deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28: 897–916

    Article  PubMed  CAS  Google Scholar 

  • Som P, Atkins HL, Bandoypadhyay D et al. (1980) A fluorinated glucose analog, 2-fluoro-2-deoxy-D-glucose (l8F): nontoxic tracer for rapid tumor detection. J Nucl Med 21: 670–675

    PubMed  CAS  Google Scholar 

  • Strauss LG, Conti PS (1991) The applications of PET in clinical oncology. J Nucl Med 32: 623–648

    PubMed  CAS  Google Scholar 

  • Su, TS, Tsai TF, Chi CW, Han SH, Chou CK (1990) Elevation of facilitated glucose-transporter messenger RNA in human hepatocellular carcinoma. Hepatology 11: 118–122

    Article  PubMed  CAS  Google Scholar 

  • Tetaud E, Barrett MP, Bringaud F, Baltz T (1997) Kinetoplastid glucose transporters. Biochem J 325: 569–580

    PubMed  CAS  Google Scholar 

  • Wahl RL, Hutchins GD, Buchsbaum DJ, Liebert M, Grossman HB, Fisher S (1991) 18F-2-deoxy-2-fluoro-D-glucose uptake into human tumor xenografts: feasibility studies for cancer imaging with PET. Cancer 67: 1544–1550

    Article  PubMed  CAS  Google Scholar 

  • Warburg O (1931) The metabolism of tumors. Richard R Smith, New York, pp 129–169

    Google Scholar 

  • Weber G, Banerjee G, Morris HP (1961) Comparative biochemistry of hepatomas. I. Carbohydrate enzymes in Morris hepatoma 5123. Cancer Res 21: 933–937

    PubMed  CAS  Google Scholar 

  • Yamamoto T, Seino Y, Fukumoto H et al. (1990) Overexpression of facilitative glucose transporter genes in human cancer. Biochem Biophy Res Commun 170: 223–230

    Article  CAS  Google Scholar 

  • Zasadny KR, Wahl RL (1993) Standardized uptake values of normal tissues at PET with 2-(fluorine-18)-fluoro-2-deoxy-D-glucose: variations with body weight and a method for correction. Radiology 189: 847–850

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Oehr, P. (1998). Stoffwechsel und Transport von Glucose und FDG. In: Rühlmann, J., Oehr, P., Biersack, HJ. (eds) PET in der Onkologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09242-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09242-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-09243-9

  • Online ISBN: 978-3-662-09242-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics