Radiopharmazie, Toxizität und Strahlendosis

  • J. Ruhlmann
  • P. Oehr

Zusammenfassung

2-[l8F]-2-desoxy-D-glukose (2-[l8F]-FDG) ist die am häufigsten eingesetzte Substanz unter den PET-Ra-diopharmaka in Europa mit mehr als 200 Applikationen pro Woche (Meyer et al. 1995). Die in der Literatur beschriebenen Untersuchungen wurden mit unterschiedlichen 2-[l8F]-FDG-Präparaten durchgeführt, die sich nur unwesentlich voneinander unterscheiden. Für die Bewertung der klinischen Daten sind diese Unterschiede unerheblich.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Baudot P, Jaque M, Robin M (1977) Effect of a diazo-polyoxa-macroobicyclic complexing agent on the urinary elimination of lead in lead-poisened rats. Toxicol Appl Pharmacol 41: 113–115PubMedCrossRefGoogle Scholar
  2. Baumann M, Schäfer E, Grein H (1984) Short term studies with the cryptating agent hexaoxa-diaza-bicyclo-hexacosane in rats. Arch Toxicol 55 [Suppl 7]: 427–429CrossRefGoogle Scholar
  3. Dowd MT, Chin-Tu C, Wendel MJ, Faulhaber PJ, Cooper MD (1991) Radiation dose to the bladder wall from 2-(l8F) fluoro-2-de-soxy-D-glucose in adult humans. J Nucl Med 32: 707–712PubMedGoogle Scholar
  4. European Pharmacopoeia (1996) Radiopharmaceutical preparations, pp 1424–1433Google Scholar
  5. Gallagher BM, Ansari A, Atkins H et al. (1977) Radiopharmaceuticals XXVII. 18F-labeled 2-desoxy-2-fluoro-D-glucose as a radiopharmaceutical for measuring regional myocardial glucose metabolism in vivo: tissue distribution and imaging studies in animals. J Nucl Med 18: 990–996PubMedGoogle Scholar
  6. Gallagher BM, Fowler JS, Gutterson NI, MacGregor RR, Wan CN, Wolf AP (1978). Metabolic trapping as a principle of radiopharmaceutical design: some factors responsible for the biodistribution of 2-Deoxy-2-[l8F]fluoro-D-glucose. J Nucl Med 19: 1154–1161PubMedGoogle Scholar
  7. Hamacher K, Coenen HH, Stöcklin G (1986) Efficient stereospecific synthesis of no-carrier-added 2-[l8F] fluoro-2-deoxy-D-glucose using aminopolyether supported nucleophilic substitution. J Nucl Med 27: 235–238PubMedGoogle Scholar
  8. Mejia AA, Nakamura T, Mastoshi I, Hatazawa J, Masaki M, Shoichi W (1991) Estimation of absorbed doses in humans due to intravenous administration of fluorine-l8F-fluorodeoxyglucose in PET studies. J Nucl Med 32: 699–706PubMedGoogle Scholar
  9. Meyer G-J, Coenen HH, Waters SL et al. (1993) Quality assurance and quality control of short-lived radiopharmaceutikals for PET. In: Stöcklin and Pike (eds) Radiopharmaceuticals for PET. Kluwer, Amsterdam, pp 91–150Google Scholar
  10. Meyer GJ, Waters SL, Coenen H H., Luxen A, Maziere B, Langström B (1995) PET radiopharmaceuticals in Europe: current use and data relevant for the formulation of summaries of product characteristics (SPCs). Eur J Nucl Med 22/12: 1420–1432PubMedCrossRefGoogle Scholar
  11. Oehr P, Ruhlmann J, Rink H (1989) 18F-FDG Transport: Abhängigkeit von Glucosekonzentration und Strahlendosis. Nuklearmedizin 37: A68Google Scholar
  12. Reivich M, Kühl D, Wolf A et al. (1979). The [l8F] fluorodeoxyglu-cose method for the measurement of local cerebral glucose utilization in man. Circ Res 44: 127–137PubMedCrossRefGoogle Scholar
  13. Som P, Atkins HL, Bandoypadhyay D, Fowler JS et al. (1980) A fluorinated glucose analog, 2-fluoro-2-deoxy-D-glucose (F-18): nontoxic tracer for rapid tumor detection. J Nucl Med 21: 670–675PubMedGoogle Scholar
  14. United States Pharmacopeia, USP (1995) Fludeoxyglucose F18 Injections. USP 23: 674Google Scholar
  15. Woosley RL, Kim YS, Huang KC (1970) Renal tubular transport of 2-deoxy-D-glucose in dogs and rats. J Pharmacol Exp Ther 173: 13–20PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • J. Ruhlmann
  • P. Oehr

There are no affiliations available

Personalised recommendations