Skip to main content

Periodic Orbits and Resonances

  • Chapter
Theory of Orbits

Part of the book series: Astronomy and Astrophysics Library ((AAL))

  • 695 Accesses

Abstract

From the Greeks’ epicycles (which, as we have already remembered, in the last century were reincarnated in terms of Fourier series) to the present studies on the periodic solutions of dynamical systems, the attention to closed orbits (for a topologist always equivalent to circles) has been continuous. Owing to the complexity that the treatment of the subject has now reached, cannot this chapter provide a complete, even if concise, picture of it. Therefore, we shall content ourselves with touching on those parts, obviously adhering to our plan, which can be approached by means of the analytical tools used so far.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. In any case, what makes these periodic solutions so precious for us is that they are, so to speak, the only breach through which we can try to penetrate into a place so far deemed inaccessible“. H. Poincaré: Les Méthodes Nouvelles de la Mécanique Céleste (Gauthiers-Villars, Paris, 1892), Vol. 1, p. 82.

    Google Scholar 

  2. For C1 Hamiltonians, the point has been established by Pugh and Robinson. See C. Pugh, C. Robinson: The C1 closing lemma, including Hamiltonians. Erg. Theory and Dyn. Syst. 3, 261–313 (1977).

    Google Scholar 

  3. For a demonstration of this statement and for a further deepening of the subject, the reader is referred to C. L. Siegel, J. K. Moser: Lectures on Celestial Mechanics (Springer, 1971), Sect. 21, of which our exposition is an incomplete summary.

    Google Scholar 

  4. L. A. Pars: A Treatise on Analytical Dynamics (Heinemann, 1964) Sects. 30.7, 30.8.

    Google Scholar 

  5. V. Szebehely: Theory of Orbits (Academic Press, 1967) Sect. 8.6.

    Google Scholar 

  6. See G. D. Birkhoff: Dynamical Systems, rev. edn. (Am. Math. Society, 1966) pp. 124–128 and the paper “Stabilità e Periodicità nella Dinamica”, Periodico di Matematiche, Ser. 4, 6 262–271 (1926). Our exposition is necessarily concise and so some subtleties have been neglected.

    Google Scholar 

  7. J. Horn: Beiträge zur Theorie der kleinen Schwingungen, Z. Math. Phys. 48, 400434 (1903); A. Lyapunov: Problème général de la stabilité des mouvements, Ann. Fac. Sci. de Toulose, 2, 203–474 (1907) - reprinted in Annals of Mathematical Studies Vol. 17 (Princeton University Press, 1949).

    Google Scholar 

  8. The example is taken from E. Zehnder: Periodic solutions of Hamiltonian equations, in Lecture Notes in Mathematics 1031, Dynamics and Processes, ed. by Ph. Blanchard, L. Streit (Springer, 1983).

    Google Scholar 

  9. A. Weinstein: Normal modes for non-linear Hamiltonian systems, Inv. Math. 20, 47–57 (1973).

    Google Scholar 

  10. The reader will find the proof of both theorems in J. Moser, Periodic orbits near an equilibrium and a theorem by Alan Weinstein. Comm. Pure Appl. Math. 29, 727–747 (1976).

    Google Scholar 

  11. H. Poincaré: Sur l’équilibre d’une masse fluide animée d’un mouvement de rotation. Acta Mathematica 7 259–380 (1885).

    Google Scholar 

  12. For a proof, see P. Hartman: Ordinary Differential Equations (Wiley, 1964).

    Google Scholar 

  13. A. Andronov: Les cycles limites de Poincaré et la théorie des oscillations auto-entretenues, C. R. Acad. Sci. Paris, 189 559–561 (1929).

    Google Scholar 

  14. See Sect. 8.5 and, for the subject we are dealing with, J. Guckenheimer, P. Holmes: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer, 1983), Sect. 3.4.

    Google Scholar 

  15. H. Koçak, F. Bisshopp, Th. Banchoff, D. Laidlaw: Topology and mechanics with computer graphics — linear Hamiltonian systems in four dimensions. Advances in APplied Mathematics 7, 282–308 (1986).

    Google Scholar 

  16. See, for instance, H. Koçak: Normal forms and versal deformations of linear Hamiltonian systems, J. Diff. Eq. 51, 359–407 (1984).

    Google Scholar 

  17. See, for instance, K. R. Meyer, G. R. Hall: Introduction to the Hamiltonian Dynamical Systems and the N-body Problem II, G.

    Google Scholar 

  18. Obviously, we are speaking of a parameter in addition to h.

    Google Scholar 

  19. D. Buchanan: Trojan satellites - limiting case, Trans. Roy. Soc. Canada 35, 9–25 (1941).

    Google Scholar 

  20. See A. Deprit: Sur les orbites periodiques issues de L4 à la resonance interne 1/4, Astron. Astrophys. 3, 88–93 (1969).

    Google Scholar 

  21. K. R. Meyer, D. R. Schmidt: Periodic orbits near L4 for mass ratios near the critical mass ratio of Routh, Celest. Mech. 4, 99–109 (1971).

    Google Scholar 

  22. We limit ourselves to quoting a few papers: J. Henrard: Periodic orbits emanating from a resonant equilibrium, Celest. Mech. 1, 437–466 (1970); Lyapunov’s center theorem for resonant equilibrium, J. Diff. Eqs. 14 431–441 (1973); D. Schmidt: Periodic solutions near a resonant equilibrium of a Hamiltonian system,Celest. Mech. 9 81–103 (1974); G. F. Dell’Antonio: Fine tuning of resonances and pcriodic solutions of Hamiltonian systems near equilibrium, Commun. Math. Phys. 120 529–546 (1989).

    Google Scholar 

  23. H. Seifert: Periodische Bewegungen mechanischen Systeme, Math. Z. 51 197–216 (1948).

    Google Scholar 

  24. P H. Rabinowitz: Periodic solutions of Hamiltonian systems. Commun. Pure and Appl. Math. XXXI,157–184 (1978).

    Google Scholar 

  25. P. H. Rabinowitz. Periodic solutions of Hamiltonian systems: A Survey. SIAM J. Math. Anal. 13, 343–352 (1982).

    Google Scholar 

  26. See the article where Berger himself surveys his work: M. S. Berger: Global aspects of periodic solutions of non-linear conservative systems, Lecture Notes in Physics 252 Local and Global Methods of Non-linear Dynamics, ed. by A. W. Sàenz, W. W. Zachary, R. Cawley (Springer, 1984).

    Google Scholar 

  27. C. G. Gray, G. Karl, V. A. Novikov: The four variational principles of mechanics, Annals of Physics 251, 1–25 (1996). The main parts of the work, with the addition of a further example of application, can also be found in C. G. Gray, G. Karl, V. A. Novikov: Direct use of variational principles as an approximation technique in classical mechanics, Am. J. Phys. 64, 1177–1184 (1996).

    Google Scholar 

  28. R. G. Helleman: Variational solutions of non-integrable systems, in Topics in Nonlinear Dynamics, Vol. 46 (American Institute of Physics, 1978) ed. by S. Jorna pp. 264–285; R. G. Heileman, T. Bountis: Periodic solutions of arbitrary period, variational methods, in Stochastic Behaviour in Classical and Quantum Hamiltonian Systems, Lecture Notes in Physics, Vol. 93, ed. by G. Casati, J. Ford, (Springer, 1979), pp. 353–375. Our exposition will also take advantage of the exposition of A. J. Lichtenberg and M. A. Lieberman, Regular and Chaotic Dynamics 2nd ed. (Springer, 1992), Sect. 2.6b.

    Google Scholar 

  29. See, for instance, B. A. Dubrovin, A. T. Fomenko, S. P. Novikov: Modern Geometry - Methods and Applications. Part I, 2nd edn (Springer, 1992) Sect. 8.

    Google Scholar 

  30. See the original papers quoted in Footnote 35 for technical details.

    Google Scholar 

  31. R. C. Churchill, G. Pecelli, D. L. Rod: A survey of the Hénon-Heiles Hamiltonian with applications to related examples, in Stochastic Behaviour in Classical and Quantum Hamiltonian Systems,Lecture Notes in Physics, Vol. 93, ed. by G. Casati, J. Ford, (Springer, 1979), pp. 76–133.

    Google Scholar 

  32. E. W. Brown: Resonance in the solar system, Bull. Am. Math. Soc. 34, 265–289 (1928).

    Google Scholar 

  33. F. J. Dyson: Missed opportunities, Bull. Am. Math. Soc. 78, 635–652 (1972). Both papers are the text of a Josiah Willard Gibbs Lecture given under the auspices of the American Mathematical Society.

    Google Scholar 

  34. A. M. Molchanov: The resonant structure of the solar system—the law of planetary distances. Icarus, 8, 203–215 (1968).

    Google Scholar 

  35. G. E. Backus: Critique of “The resonant structure of the solar system” by A. M. Molchanov, Icarus 11, 88–92 (1969). M. Hénon: A comment on “The resonant structure of the solar system” by A. M. Molchanov, Icarus 11, 93–94 (1969).

    Google Scholar 

  36. A. E. Roy, M. W. Ovenden: I. On the occurrence of commensurable mean motions in the Solar System, Mon. Not. R. Astr. Soc. 114, 232–241 (1954); II. The mirror problem, Mon. Not. R. Astr. Soc. 115, 297–309 (1955).

    Google Scholar 

  37. The curious thing is that until 1965 astronomers had always corroborated the observations made by Schiaparelli (1889) which attributed to Mercury a synchronous state. Only the radar observations due to Pettengill and Dice (and later on confirmed) revealed that Mercury was in a 3: 2 resonance. The story is reviewed in P. Goldreich, S. J. Peale: The Dynamics of planetary rotations. Ann. Rev. of Astronomy and Astrophysics 14, 287–320 (1969).

    Google Scholar 

  38. For a justification of the model, see A. Celletti: Analysis of resonances in the spin-orbit problem in celestial mechanics: the synchronous resonance (Part I), Journal of Appl. Math. Phys. (ZAMP) 41, 174–204 (1990), a paper which we shall partly follow.

    Google Scholar 

  39. See J. M. A. Danby, Fundamentals of Celestial Mechanics 2nd Revised & Enlarged Edition (Willmann-Bell, Richmond, 1988) Sects. 5.2, 13.2.

    Google Scholar 

  40. See P. Goldreich, S. J. Peale: Spin—orbit coupling in the solar system, Astron. J. 71, 425–438 (1966).

    Google Scholar 

  41. J. Wisdom, S. J. Peale, F. Mignard: The chaotic rotation of Hyperion, Icarus 58, 137–152 (1984).

    Google Scholar 

  42. J. J. Klavetter: Rotation of Hyperion, I. Observations - Astron. J. 97, 570–579 (1989); Rotation of Hyperion, II. Dynamics, Astron. J. 98, 1855–1874 (1989). A nice relation of Klavetter’s observations can be found in the fascinating book by Ivars Peterson: Newton’s Clock (Freeman, 1993).

    Google Scholar 

  43. See, for instance, A. Morbidelli, M. Moons: Secular resonances in mean motion commensurabilities: the 2/1 and 3/2 cases, Icarus 102, 1–17 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Boccaletti, D., Pucacco, G. (1999). Periodic Orbits and Resonances. In: Theory of Orbits. Astronomy and Astrophysics Library. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09240-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09240-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08222-1

  • Online ISBN: 978-3-662-09240-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics