Skip to main content

Modern Neuroimaging of Pediatric CNS Tumors

  • Chapter
  • 196 Accesses

Part of the book series: Pediatric Oncology ((PEDIATRICO))

Abstract

Neuroimaging has been an important tool in the diagnosis of brain tumors and the assessment of their response to therapy for more than 20 years. Pre- and post-contrast magnetic resonance (MR) imaging remains the most important tool in the assessment of CNS neoplasms. Recently, however, technical advances have allowed the development of new techniques that enable the noninvasive evaluation of physiologic aspects of brain tumors and the surrounding brain. In this chapter, the new techniques and their applications to the assessment of brain tumors are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alberstone CD, Skirboll SL, Benzel EC et al (2000) Magnetic source imaging and brain surgery: presurgical and intraoperative planning in 26 patients. J Neurosurg 92: 10791090

    Google Scholar 

  • Aronen HJ, Gazit IE, Louis DN et al (1994) Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology 191: 41 - 51

    Google Scholar 

  • Ball WS Jr, Holland SK (2001) Perfusion imaging in the pediatric patient. MRI Clin North Am 9: 207 - 216

    Google Scholar 

  • Barker FG Jr, Chang SM, Valk PE et al (1997) 18-Fluorodeoxyglucose uptake and survival of patients with suspected recurrent malignant glioma. Cancer 79x15-26

    Google Scholar 

  • Barker PB, Glickson JD, Bryan RN (1993) In vivo magnetic resonance spectroscopy of human brain tumors. Top Magn Reson Imaging 5:32-45

    Google Scholar 

  • Beisteiner R Gomiscek G, Erdler M et al (1995) Comparing localization of conventional functional magnetic resonance imaging and magnetoencephalography. Eur J Neurosci 7: 1121 - 1124

    Article  PubMed  CAS  Google Scholar 

  • Birken DL, Oldendorf WH (1989) N-acetyl-L-aspartic acid: a literature review of a compound prominent in 1H-NMR spectroscopic studies of brain. Neurosci Biobehavioral Rev 13: 23 - 31

    Article  CAS  Google Scholar 

  • Black KL, Emerick T, Hob C et al (1994) Thallium-201 SPECT and positron emission tomography equal predictors of glioma grade and recurrence. Neurol Res 16: 93 - 96

    PubMed  CAS  Google Scholar 

  • Boxerman JL, Bandettini PA, Kwong KK et al (1995) The intravascular contribution to fMRI signal change: Monte Carlo modeling and diffusion-weighted studies in vivo. Magn Re-son Med 34:4-10

    Google Scholar 

  • Breier JI, Simos PG, Zouridakis G et al (1999) Language dominance determined by magnetic source imaging: a comparison with the Wada procedure. Neurology 53:938-945

    Google Scholar 

  • Brunelle F (2000) Noninvasive diagnosis of brain tumours in children. Childs Nery Syst 16: 731 - 734

    Article  CAS  Google Scholar 

  • Butzen J, Prost R, Chetty V et al (2000) Discrimination between neoplastic and nonneoplastic brain lesions by use of proton MR spectroscopy: the limits of accuracy with a logistic regression model. AJNR 21: 1213 - 1219

    PubMed  CAS  Google Scholar 

  • Cappabianca P, Spaziante R, Caputi F et al (1991) Accuracy of the analysis of multiple small fragments of glial tumors obtained by stereotactic biopsy. Acta Cytol 35:505-511

    Google Scholar 

  • Cedzich C, Taniguchi M, Schafer S et al (1996) Somatosensory evoked potential phase reversal and direct motor cortex stimulation during surgery in and around the central region. Neuroimage 4: 201 - 209

    Article  Google Scholar 

  • Cha S, Lu S, Johnson G et al (2000a) Dynamic susceptibility contrast MR imaging: correlation of signal intensity changes with cerebral blood volume measurements. J Magn Re-son Imaging 11: 114 - 119

    Article  CAS  Google Scholar 

  • Cha S, Knopp EA, Johnson G et al (wool)) Dynamic contrast-enhanced T2-weighted MR imaging of recurrent malignant gliomas treated with thalidomide and carboplatin. AJNR 21: 881 - 890

    Google Scholar 

  • Cha S, Knopp EA, Johnson G et al (2002) Intracranial mass lesions: dynamic contrast-enhanced susceptibility-weighted echo-planar perfusion MR imaging. Radiology 223: 11 - 29

    Article  PubMed  Google Scholar 

  • Chan YL, Leung SF, King AD et al (1999Late radiation injury to the temporal lobes: morphologic evaluation at MR imaging. Radiology 213: 800 - 807

    Google Scholar 

  • Chandrasoma PT, Smith MM, Apuzzo ML (1989) Stereotactic biopsy in the diagnosis of brain masses: comparison of results of biopsy and resected surgical specimen. Neurosurgery 24: 160 - 165

    Article  PubMed  CAS  Google Scholar 

  • Chang KH, Song IC, Kim SH et al (1998) In vivo single-voxel proton MR spectroscopy in intracranial cystic masses. AJNR 19: 401 - 405

    PubMed  CAS  Google Scholar 

  • Cheng LL, Chang I W, Louis DN et al (1998) Correlation of high-resolution magic angle spinning proton magnetic resonance spectroscopy with histopathology of intact human brain tumor specimens. Cancer Res 58: 1825 - 1832

    PubMed  CAS  Google Scholar 

  • Choi JY, Kim SE, Shin HJ et al (2000) Brain tumor imaging with 99m Tc-tetrofosmin: comparison with 201T1, 99mTc-MIBI, and i8F-fluorodeoxyglucose. J Neurooncol 46: 63 - 70

    Article  PubMed  CAS  Google Scholar 

  • Dadparvar S, Hussain R, Koffler SP et al (2000) The role of Tc-99m HMPAO functional brain imaging in detection of cerebral radionecrosis. Cancer 6: 381 - 387

    CAS  Google Scholar 

  • De Witte O, Lefranc F, Levivier M et al (2000) FDG-PET as a prognostic factor in high-grade astrocytoma. J Neurooncol 49: 157 - 163

    Article  PubMed  Google Scholar 

  • Dezortova M, Hajek M, Cap F et al (1999) Comparison of MR spectroscopy and MR imaging with contrast agent in children with cerebral astrocytomas. Childs Nery Syst 15: 408 - 412

    Google Scholar 

  • Di Chiro G, Oldfield E, Wright DC et al (1988) Cerebral necrosis after radiotherapy and/or intraarterial chemotherapy for brain tumors: PET and neuropathologic studies. AJR 150:189-197

    Google Scholar 

  • Dillon WP, Roberts T (1999) The limitations of functional MR imaging: a caveat. AJNR 20: 536

    Google Scholar 

  • Disbrow E, Roberts TP, Slutsky D et al (1999) The use of fMRI for determining the topographic organization of cortical fields in human and nonhuman primates. Brain Res 829: 167 - 173

    Google Scholar 

  • Dowling C, Bollen AW, Noworolski SM et al (2001) Preoperative proton MR spectroscopic imaging of brain tumors: correlation with histopathologic analysis of resection specimens. AJNR 22: 604 - 612

    PubMed  CAS  Google Scholar 

  • Field AS, Yen YF, Burdette JH et al (2000) False cerebral activation on BOLD functional MR images: study of low-amplitude motion weakly correlated to stimulus. AJNR 21: 13881396

    Google Scholar 

  • Filippi M, Cercignani M, Inglese M et al (2001) Diffusion tensor magnetic resonance imaging in multiple sclerosis. Neurology 56: 304 - 311

    Article  PubMed  CAS  Google Scholar 

  • Ganslandt O, Fahlbusch R, Nimsky C et al (1999) Functional neuronavigation with magnetoencephalography: outcome in 5o patients with lesions around the motor cortex. J Neurosurg 91:73-79

    Google Scholar 

  • Gauvain KM, McKinstry RC, Mukherjee P et al (2001) Evaluating pediatric brain tumor cellularity with diffusion-tensor imaging. AJR 177:449-454

    Google Scholar 

  • Gerlowski LE, Jain RK (1986) Microvascular permeability of normal and neoplastic tissues. Microvascular Res 31:288305

    Google Scholar 

  • Giannini C, Scheithauer BW (1997) Classification and grading of low-grade astrocytic tumors in children. Brain Pathol 7: 785 - 798

    Article  PubMed  CAS  Google Scholar 

  • Girard N, Wang ZJ, Erbetta A et al (1998) Prognostic value of proton MR spectroscopy of cerebral hemisphere tumors in children. Neuroradiology 40: 121 - 125

    Article  PubMed  CAS  Google Scholar 

  • Go KG, Keuter EJ, Kamman RL et al (1994) Contribution of magnetic resonance spectroscopic imaging and L[1-uC]tyrosine positron emission tomography to localization of cerebral gliomas for biopsy. Neurosurgery 34: 994 - 1002

    Google Scholar 

  • Graham SJ, Henkelman RM (1997) Understanding pulsed mag- netization transfer. J Magn Reson Imaging 7: 903 - 912

    Article  PubMed  CAS  Google Scholar 

  • Grand S, Passaro G, Ziegler A et al (1999) Necrotic tumor versus brain abscess: importance of amino acids detected at 1H MR spectroscopy-initial results. Radiology 213: 785 - 793

    PubMed  CAS  Google Scholar 

  • Grant PE, Barkovich AJ, Wald LL et al (1997) High-resolution surface-coil MR of cortical lesions in medically refractory epilepsy: a prospective study. AJNR 18: 291 - 301

    PubMed  CAS  Google Scholar 

  • Grant PE, Vigneron DB, Barkovich AJ (1998) High-resolution imaging of the brain. Magn Reson Imaging Clin North Am 6:139-154

    Google Scholar 

  • Greenwood J (1991) Mechanisms of blood-brain barrier breakdown. Neuroradiology 33: 95 - 100

    Article  PubMed  CAS  Google Scholar 

  • Grossman RI, Gomori JM, Ramer KN et al (1994) Magnetization transfer: theory and clinical applications in neuroradiology. Radiographics 14: 279 - 290

    PubMed  CAS  Google Scholar 

  • Gupta RK, Vatsal DK, Husain N et al (2001) Differentiation of tuberculous from pyogenic brain abscesses with in vivo proton MR spectroscopy and magnetization transfer MR imaging. AJNR 22x503-1509

    Google Scholar 

  • Haba D, Pasco Papon A et al (2001) Use of half-dose gadolinium-enhanced MRI and magnetization transfer saturation in brain tumors. Eur Radiol 11: 117 - 122

    Article  PubMed  CAS  Google Scholar 

  • Han D, Chang KH, Han MH et al (1998) Half-dose gadolinium-enhanced MR imaging with magnetization transfer technique in brain tumors: comparison with conventional contrast-enhanced MR imaging. AJR 170x89-193

    Google Scholar 

  • Holodny AI, Schulder M, Liu WC et al (1999) Decreased BOLD functional MR activation of the motor and sensory cortices adjacent to a glioblastoma multiforme: implications for image-guided neurosurgery. AJNR 20: 609 - 612

    Google Scholar 

  • Horska A, Ulug AM, Melhem ER et al (2001) Proton magnetic resonance spectroscopy of choroid plexus tumors in children. J Magn Reson Imaging 14: 78 - 82

    Article  PubMed  CAS  Google Scholar 

  • Hunter JV, Wang Z) (2001) MR spectroscopy in pediatric neuroradiology. Magn Reson Imaging Clin North Am 9: 165 - 189

    CAS  Google Scholar 

  • Inglis BA, Neubauer D, Yang L et al (1999) Diffusion tensor MR imaging and comparative histology of glioma engrafted in the rat spinal cord. AJNR 20: 713 - 716

    Google Scholar 

  • Joyce P, Bentson J, Takahashi M et al (1978) The accuracy of predicting histologic grades of supratentorial astrocytomas on the basis of computerized tomography and cerebral angiography. Neuroradiology 16:346-348

    Google Scholar 

  • Kamada K, Houkin K, Abe H et al (1997) Differentiation of cerebral radiation necrosis from tumor recurrence by proton magnetic resonance spectroscopy. Neurol Med Chir (Tokyo) 37: 250 - 256

    Google Scholar 

  • Kaplan AM, Bandy DJ, Manwaring KH et al (1999) Functional brain mapping using positron emission tomography scanning in preoperative neurosurgical planning for pediatric brain tumors. J Neurosurg 91: 797 - 803

    Google Scholar 

  • Kaplan WD, Takvorian T, Morris JH et al (1987) Thallium-201 brain tumor imaging: a comparative study with pathologic correlation. J Nucl Med 28:47-52

    Google Scholar 

  • Keene DL, Hsu E, Ventureyra E (1999) Brain tumors in childhood and adolescence. Pediatr Neurol 20: 198 - 203

    Google Scholar 

  • Kim EE, Chung SK, Haynie TP et al (1992) Differentiation of residual or recurrent tumors from post-treatment changes with F-18 FDG PET. Radiographics 12: 269 - 279

    PubMed  CAS  Google Scholar 

  • Kim SH, Chang KH, Song IC et al (1997) Brain abscess and brain tumor: discrimination with in vivo H-1 MR spectroscopy. Radiology 204:239-245

    Google Scholar 

  • Kimura T, Sako K, Gotoh T et al (2001) In vivo single-voxel proton MR spectroscopy in brain lesions with ring-like enhancement. NMR Biomed 14: 339 - 349

    Article  PubMed  CAS  Google Scholar 

  • Kincaid PK, El-Saden SM, Park SH et al (1998) Cerebral gangliogliomas: preoperative grading using FDG-PET and 201 Tl-SPECT.AJNR 19: 801 - 806

    CAS  Google Scholar 

  • Kinoshita Y, Yokota A (1997) Absolute concentrations of metabolites in human brain tumors using in vitro proton magnetic resonance spectroscopy. NMR Biomed 10: 2 - 12

    Article  PubMed  CAS  Google Scholar 

  • Knauth M, Forsting M, Hartmann M et al (1996) MR enhancement of brain lesions: increased contrast dose compared with magnetization transfer. AJNR 17x853-i859

    Google Scholar 

  • Knopp EA, Cha S, Johnson G et al (1999) Glial neoplasms: dynamic contrast-enhanced T2*-weighted MR imaging. Radiology 211: 791 - 798

    PubMed  CAS  Google Scholar 

  • Krouwer HG, Kim TA, Rand SD et al (1998) Single-voxel proton MR spectroscopy of nonneoplastic brain lesions suggestive of a neoplasm. AJNR 19: 1695 - 1703

    PubMed  CAS  Google Scholar 

  • Kugel H, Heindel W, Ernestus RI et al (1992) Human brain tumors: spectral patterns detected with localized H-1 MR spectroscopy. Radiology 183: 701 - 709

    PubMed  CAS  Google Scholar 

  • Law M, Cha S, Knopp EA et al (2002) High-grade gliomas and solitary metastases: differentiation by using perfusion and proton spectroscopic MR imaging. Radiology 222: 715 - 721

    Article  PubMed  Google Scholar 

  • Lazareff JA, Gupta RK, Alger J (1999) Variation of post-treatment H-MRSI choline signal intensity in pediatric gliomas. J Neurooncol 41: 291 - 298

    Article  PubMed  CAS  Google Scholar 

  • Lehnhardt FG, Rohn G, Ernestus RI et al (2001) 1H- and (31)P-MR spectroscopy of primary and recurrent human brain tumors in vitro: malignancy-characteristic profiles of water soluble and lipophilic spectral components. NMR Biomed 14:307-317

    Google Scholar 

  • Lev MH, Grant PE (2000) MEG versus BOLD MR imaging: functional imaging, the next generation? AJNR 21: 13691370

    Google Scholar 

  • Lin A, Bluml S, Mamelak AN (1999) Efficacy of proton magnetic resonance spectroscopy in clinical decision making for patients with suspected malignant brain tumors. J Neurooncol 45: 69 - 81

    Article  PubMed  CAS  Google Scholar 

  • Lorberboym M, Mandell LR, Mosesson RE et al (1997) The role of thallium-201 uptake and retention in intracranial tumors after radiotherapy. J Nucl Med 38: 223 - 226

    PubMed  CAS  Google Scholar 

  • Ludemann L, Hamm B, Zimmer C (2000) Pharmacokinetic analysis of glioma compartments with dynamic Gd-DTPAenhanced magnetic resonance imaging. Magn Reson Imaging 18: 1201 - 1204

    Article  PubMed  CAS  Google Scholar 

  • Maeda M, Itoh S, Kimura H et al (1993) Tumor vascularity in the brain: evaluation with dynamic susceptibility-contrast MR imaging. Radiology 189: 233 - 238

    Google Scholar 

  • Maria BL, Drane WE, Quisling RG et al (1994) Value of thallium-201 SPECT imaging in childhood brain tumors. Pediatr Neurosurg 20: 11 - 18

    Article  PubMed  CAS  Google Scholar 

  • Maria BL, Drane WB, Quisling RJ et al (1997) Correlation between gadolinium diethylenetriamine-pentaacetic acid contrast enhancement and thallium-201 chloride uptake in pediatric brainstem glioma. J Child Neurol 12: 341 - 348

    Article  PubMed  CAS  Google Scholar 

  • Maria BL, Drane WE, Mastin ST et al (1998) Comparative value of thallium and glucose SPECT imaging in childhood brain tumors. Pediatr Neurol 19: 351 - 357

    Article  PubMed  CAS  Google Scholar 

  • Martin AJ, Liu H, Hall WA et al (2001) Preliminary assessment of turbo spectroscopic imaging for targeting in brain biopsy. AJNR 22:959-968

    Google Scholar 

  • Martin E, Marcar VL (2001) Functional MR imaging in pediatrics. MRI Clin North Am 9: 231 - 244

    CAS  Google Scholar 

  • Massager N, David P, Goldman S et al (2000) Combined magnetic resonance imaging and positron emission tomography-guided stereotactic biopsy in brainstem mass lesions: diagnostic yield in a series of 3o patients. J Neurosurg 93:951-957

    Google Scholar 

  • McKnight TR, Noworolski SM, Vigneron DB et al (2001) An automated technique for the quantitative assessment of 3DMRSI data from patients with glioma. J Magn Reson Imaging 13:167-177

    Google Scholar 

  • Melhem ER, Itoh R, Jones L et al (2000) Diffusion tensor MR imaging of the brain: effect of diffusion weighting on trace and anisotropy measurements. AJNR 21a813-1820

    Google Scholar 

  • Mitchell DG (1999) MRI principles. Saunders, Philadelphia, pp 199-203,249-255

    Google Scholar 

  • Moyher SE, Wald LL, Nelson SJ et al (1997) High resolution T2-weighted imaging of the human brain using surface coils and an analytical reception profile correction. J Magn Re-son Imaging 7: 512 - 517

    Article  CAS  Google Scholar 

  • Negendank WG, Sauter R, Brown TR et al (1996) Proton magnetic resonance spectroscopy in patients with glial tumors: a multicenter study. J Neurosurg 84:449-458

    Google Scholar 

  • Nelson SJ, Nalbandian AB, Proctor E et al (1994) Registration of images from sequential MR studies of the brain. J Magn Re-son Imaging 4: 877 - 883

    Google Scholar 

  • Nelson SJ, Huhn S, Vigneron DB et al (1997) Volume MRI and MRSI techniques for the quantitation of treatment response in brain tumors: presentation of a detailed case study. J Magn Reson Imaging 7: 1146 - 1152

    Article  PubMed  CAS  Google Scholar 

  • Nelson SJ, Vigneron DB, Star-Lack J et al (1997) High spatial resolution and speed in MRSI. NMR Biomed 10: 411 - 422

    Article  PubMed  CAS  Google Scholar 

  • Nelson SJ, Vigneron DB, Dillon WP (1999) Serial evaluation of patients with brain tumors using volume MRI and 3D 1H MRSI. NMR Biomed 12: 123 - 138

    Google Scholar 

  • Norfray JF, Tomita T, Byrd SE et al (1999) Clinical impact of MR spectroscopy when MR imaging is indeterminate for pediatric brain tumors. AJR 173: 119 - 125

    Google Scholar 

  • O’Tuama LA (1998) Childhood brain tumor: neuroimaging correlated with disease outcome. Pediatr Neurol 19: 259 - 262

    Article  PubMed  Google Scholar 

  • Ogawa T, Kanno I, Shishido F et al (1991) Clinical value of PET with 18F-fluorodeoxyglucose and L-methyl-nC-methionine for diagnosis of recurrent brain tumor and radiation injury. Acta Radiol 32: 197 - 202

    Article  PubMed  CAS  Google Scholar 

  • Otsubo H, Snead OC III (2001) Magnetoencephalography and magnetic source imaging in children. J Child Neurol 16: 227-235

    Google Scholar 

  • Ott D, Hennig J, Ernst T (1993) Human brain tumors: assessment with in vivo proton MR spectroscopy. Radiology 186:745-752

    Google Scholar 

  • Papanicolaou AC, Simos PG, Breier JI et al (2001) Brain plasticity for sensory and linguistic functions: a functional imaging study using magnetoencephalography with children and young adults. J Child Neurol 16: 241 - 252

    PubMed  CAS  Google Scholar 

  • Peters AM (1998) Fundamentals of tracer kinetics for radiologists. Br J Radiol 71: 1116 - 1129

    PubMed  CAS  Google Scholar 

  • Pierpaoli C, Jezzard P, Basser PJ et al (1996) Diffusion tensor MR imaging of the human brain. Radiology 201: 637 - 648

    PubMed  CAS  Google Scholar 

  • Plate KH, Mennel HD (1995) Vascular morphology and angiogenesis in glial tumors. Exp Toxicol Pathol 47:89-94

    Google Scholar 

  • Poptani H, Gupta RK, Jain VK et al (1995) Characterization of intracranial mass lesions with in vivo proton MR spectroscopy. AJNR 16: 1593 - 1603

    PubMed  CAS  Google Scholar 

  • Poupon C, Clark CA, Frouin V et al (2000) Regularization of diffusion-based direction maps for the tracking of brain white matter fascules. Neuroimage 12: 184 - 195

    Article  PubMed  CAS  Google Scholar 

  • Poussaint TY, Siffert J, Barnes PD et al (1995) Hemorrhagic vasculopathy after treatment of central nervous system neoplasia in childhood: diagnosis and follow-up. AJNR 16: 693-699

    Google Scholar 

  • Provenzale JM,Arata MA,Turkington TG, et al (1999) Gangliogliomas: characterization by registered positron emission tomography-MR images. AJR 172:1103-1107

    Google Scholar 

  • Pui MH (2000) Magnetization transfer analysis of brain tumor, infection, and infarction. J Magn Reson Imaging 12: 395-399

    Google Scholar 

  • Pujol J, Conesa G, Deus J et al (1998) Clinical application of functional magnetic resonance imaging in presurgical identification of the central sulcus. J Neurosurg 88: 863 - 869

    Article  PubMed  CAS  Google Scholar 

  • Ricci PE, Karis JP, Heiserman JE et al (1998) Differentiating recurrent tumor from radiation necrosis: time for re-evaluation of positron emission tomography? AJNR 19:407-413

    Google Scholar 

  • Roberts HC, Roberts TP, Brasch RC et al (2000) Quantitative measurement of microvascular permeability in human brain tumors achieved using dynamic contrast-enhanced MR imaging: correlation with histologic grade. AJNR 21: 891-899

    Google Scholar 

  • Roberts TP, Disbrow EA, Roberts HC et al (2000) Quantification and reproducibility of tracking cortical extent of activation by use of functional MR imaging and magnetoencephalography. AJNR 21a377-1387

    Google Scholar 

  • Roberts TP, Rowley HA (1997) Mapping of the sensorimotor cortex: functional MR and magnetic source imaging. AJNR 18: 871 - 880

    PubMed  CAS  Google Scholar 

  • Rosen BR, Belliveau JW, Aronen HJ et al (1991) Susceptibility contrast imaging of cerebral blood volume: human experience. Magn Reson Med 22:293-299

    Google Scholar 

  • Rosen BR, Belliveau JW, Vevea JM et al (1990) Perfusion imaging with NMR contrast agents. Magn Reson Med 14: 249 - 265

    Article  PubMed  CAS  Google Scholar 

  • Salibi N, Brown MA (1998) Clinical MR spectroscopy, first principles. Wiley-Liss, New York

    Google Scholar 

  • Shimizu H, Kumabe T, Tominaga T et al (1996) Noninvasive evaluation of malignancy of brain tumors with proton MR spectroscopy. AJNR 17:737-747

    Google Scholar 

  • Shino A, Nakasu S, Matsuda M et al (1999) Noninvasive evaluation of the malignant potential of intracranial meningiomas performed using proton magnetic resonance spectroscopy. J Neurosurg 91: 928 - 934

    Google Scholar 

  • Shinoura N, Nishijima M, Hara T et al (1997) Brain tumors: de- tection with C-11 choline PET. Radiology 202:497-503

    Google Scholar 

  • Shtern F (1992) Clinical experimentation in magnetic resonance spectroscopy: a perspective from the national cancer institute. NMR Biomed 5: 325 - 328

    Article  PubMed  CAS  Google Scholar 

  • Shukla-Dave A, Gupta RK, Roy R et al (2001) Prospective evaluation of in vivo proton MR spectroscopy in differentiation of similar appearing intracranial cystic lesions. Magn Re-son Imaging 19: 103 - 110

    Article  CAS  Google Scholar 

  • Siegal T, Rubinstein R, Tzuk-Shina T et al (1997) Utility of relative cerebral blood volume mapping derived from perfusion magnetic resonance imaging in the routine follow up of brain tumors. J Neurosurg 86: 22 - 27

    Article  PubMed  CAS  Google Scholar 

  • Sijens PE,Vecht CJ, Levendag PC et al (1995) Hydrogen magnetic resonance spectroscopy follow-up after radiation therapy of human brain cancer. Invest Radiol 30:738-744

    Google Scholar 

  • Simos PG, Papanicolaou AC, Breier JI et al (1999) Localization of language-specific cortex by using magnetic source imaging and electrical stimulation mapping. J Neurosurg 91: 787-796

    Google Scholar 

  • Stippich C, Freitag P, Kassubek J et al (1998) Motor, somatosensory and auditory cortex localization by fMRI and MEG. Neuroreport 9: 1953 - 1957

    Article  PubMed  CAS  Google Scholar 

  • Strong JA, Hatten HP Jr, Brown MT et al (1993) Pilocytic astrocytoma: correlation between the initial imaging features and clinical aggressiveness. AIR 161:369-372

    Google Scholar 

  • Sugahara T, Korogi Y, Kochi M et al (1998) Correlation of MR imaging-determined cerebral blood volume maps with histologic and angiographie determination of vascularity of gliomas. AIR 171: 1479 - 1486

    CAS  Google Scholar 

  • Sugahara T, Korogi Y, Shigematsu Y et al (1999) Value of dynamic susceptibility contrast magnetic resonance imaging in the evaluation of intracranial tumors. Top Magn Reson Imaging 10: 114 - 124

    Google Scholar 

  • Sugahara T, Korogi Y, Tomiguchi Set al (2000) Posttherapeutic intraaxial brain tumor: the value of perfusion-sensitive contrast-enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast-enhancing tissue. AJNR 21: 901 - 909

    PubMed  CAS  Google Scholar 

  • Sugahara T, Korogi Y, Kochi M et al (2001) Perfusion-sensitive MR imaging of gliomas: comparison between gradient-echo and spin-echo echo-planar imaging techniques. AJNR 22: 1306 - 1315

    PubMed  CAS  Google Scholar 

  • Sutton LN, Wang Z, Gusnard D et al (1992) Proton magnetic resonance spectroscopy of pediatric brain tumors. Neurosurgery 31: 195 - 202

    Article  PubMed  CAS  Google Scholar 

  • Suzuki A,Yasui N (1992) Intraoperative localization of the central sulcus by cortical somatosensory evoked potentials in brain tumor. Case report. J Neurosurg 76: 867 - 870

    Google Scholar 

  • Szigety SK, Allen PS, Huyser-Wierenga D et al (1993) The effect of radiation on normal human CNS as detected by NMR spectroscopy. Int J Radiat Oncol Biol Phys 25: 695 - 701

    Article  PubMed  CAS  Google Scholar 

  • Szymanski MD, Perry DW, Gage NM et al (2001) Magnetic source imaging of late evoked field responses to vowels: toward an assessment of hemispheric dominance for language. J Neurosurg 94:445-453

    Google Scholar 

  • Tanner SF, Ramenghi LA, Ridgway JP et al (2000) Quantitative comparison of intrabrain diffusion in adults and preterm and term neonates and infants. AJR 174:1643-i649

    Google Scholar 

  • Taylor JS, Langston JW, Reddick WE et al (1996) Clinical value of proton magnetic resonance spectroscopy for differentiating recurrent or residual brain tumor form delayed cerebral necrosis. Int J Radiat Oncol Biol Phys 36: 1251 - 1261

    Article  PubMed  CAS  Google Scholar 

  • Tomoi M, Kimura H, Yoshida M et al (1997) Alterations of lactate(+lipid) concentration in brain tumors with in vivo hydrogen magnetic resonance spectroscopy during radiotherapy. Invest Radio’ 32: 288 - 296

    Article  CAS  Google Scholar 

  • Tzika AA, Vigneron DB, Dunn RS et al (1996) Intracranial tumors in children: small single-voxel proton MR spectroscopy using short-and long-echo sequences. Neuroradiology 38:254-263

    Google Scholar 

  • Tzika AA, Vajapeyam S, Barnes PD (1997) Multivoxel proton MR spectroscopy and hemodynamic MR imaging of childhood brain tumors: preliminary observations. AJNR 18: 203 - 218

    PubMed  CAS  Google Scholar 

  • Tzika AA, Zurakowski D, Poussaint TY et al (2001) Proton magnetic spectroscopic imaging of the child’s brain: the response of tumors to treatment. Neuroradiology 43:i69-177

    Google Scholar 

  • Tzika AA, Zarifi MK, Goumnerova L et al (2002) Neuroimaging in pediatric brain tumors: Gd-DTPA-enhanced, hemodynarnic, and diffusion MR imaging compared with MR spectroscopic imaging. AJNR 23: 322-333

    Google Scholar 

  • Urenjak J, Williams SR, Gadian DG et al (1993) Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types. J Neurose 13: 981 - 989

    Google Scholar 

  • Usenius T, Usenius JP, Tenhunen M et al (1995) Radiation-induced changes in human brain metabolites as studied by 1H nuclear magnetic resonance spectroscopy in vivo. Int J Radiat Oncol Biol Phys 33:719-724

    Google Scholar 

  • Valk PE, Dillon WP (1991) Radiation injury of the brain. AJNR 12: 45 - 62

    PubMed  CAS  Google Scholar 

  • Valk PE, Budinger TF, Levin VA et al (1988) PET of malignant cerebral tumors after interstitial brachytherapy. Demonstration of metabolic activity and correlation with clinical outcome. J Neurosurg 69: 830-838

    Google Scholar 

  • Venkatesh SK, Gupta RK, Pal L et al (2001) Spectroscopic increase in choline signal is a nonspecific marker for differentiation of infective/inflammatory from neoplastic lesions of the brain. J Magn Reson Imaging 14: 8 - 15

    Article  PubMed  CAS  Google Scholar 

  • Vezina LG (1997) Diagnostic imaging in neuro-oncology. Pediatr Clin North Am 44: 701 - 719

    Article  PubMed  CAS  Google Scholar 

  • Vigneron D, Bollen A, McDermott Met al (2001) Three-dimensional magnetic resonance spectroscopic imaging of histologically confirmed brain tumors. Magn Reson Imaging 19: 89 - 101

    Article  PubMed  CAS  Google Scholar 

  • Waldrop SM, Davis PC, Padgett CA et al (1998) Treatment of brain tumors in children is associated with abnormal MR spectroscopic ratios in brain tissue remote from the tumor site. AJNR 19: 963 - 970

    PubMed  CAS  Google Scholar 

  • Wang GJ, Volkow ND, Lau YH et al (1996) Glucose metabolic changes in nontumoral brain tissue of patients with brain tumor following radiotherapy: a preliminary study. JCAT 20: 709 - 714

    CAS  Google Scholar 

  • Wang Z, Sutton LN, Cnaan A et al (1995) Proton MR spectros- copy of pediatric cerebellar tumors. AJNR 16: 1821 - 1833

    PubMed  CAS  Google Scholar 

  • Wang Z, Zimmerman RA, Sauter R (1996) Proton MR spectroscopy of the brain: clinically useful information obtained in assessing CNS diseases in children. AJR 167: 191 - 199

    PubMed  CAS  Google Scholar 

  • Weisskoff RM, Zuo CS, Boxerman JL et al (1994) Microscopic susceptibility variation and transverse relaxation: theory and experiment. Magn Reson Med 31: 601 - 610

    Google Scholar 

  • Wilken B, Dechent P, Herms J et al (2000) Quantitative proton magnetic resonance spectroscopy of focal brain lesions. Pediatr Neurol 23: 22 - 31

    Article  PubMed  CAS  Google Scholar 

  • Yeung DK, Chan Y, Leung S et al (2001) Detection of an intense resonance at 2.4 ppm in 1H MR spectra of patients with severe late-delayed, radiation-induced brain injuries. Magn Reson Med 45:994-1000

    Google Scholar 

  • Yousem DM, Lenkinski RE, Evans S et al (1992) Proton MR spectroscopy of experimental radiation-induced white matter injury. JCAT 16:543-548

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bryant, S.O., Cha, S., Barkovich, A.J. (2004). Modern Neuroimaging of Pediatric CNS Tumors. In: Gupta, N., Banerjee, A., Haas-Kogan, D. (eds) Pediatric CNS Tumors. Pediatric Oncology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09227-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09227-9_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05554-6

  • Online ISBN: 978-3-662-09227-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics