Medikamentöse Wirkungsmechanismen der Antiepileptika mit Berücksichtigung des Transmitterstoffwechsels. Tierexperimentelle Aspekte

  • W. Löscher
Conference paper
Part of the Verhandlungen der Deutschen Gesellschaft für Neurologie book series (VDGNEUROLOGIE, volume 1)

Zusammenfassung

Trotz einer sehr umfangreichen Forschung auf dem Gebiet der Epilepsie und ihrer Behandlung wissen wir wenig über die neurophysiologische und vor allem neurochemische Pathogenese dieser Erkrankung und den Wirkungsmechanismus antiepileptischer Medikamente. Im Zentrum jeder epileptischen Manifestation steht die gestörte Funktion zerebraler Neurone. Charakteristisch für das “epileptische” Neuron ist dabei die abnorme Labilität des Membranpotentials mit einer Neigung zu Spontanentladungen. Jedes Neuron kann unter pathophysiologischen Bedingungen epileptisch werden durch (1) Störung spezifischer Membranfunktionen, (2) Störungen des extra- und intrazellulären Ionenhaushalts, (3) Depolarisation der Zellmembran als Folge einer gesteigerten Konzentration exzitatorischer oder Mangel an inhibitorischen Transmittersubstanzen oder (4) Fehlen normaler inhibitorischer Einflüsse von Seiten besonderer Zellen mit inhibitorischer Funktion. Alle Antiepileptika haben nun die Eigenschaft, die Erregung normaler Neurone durch epileptische Neurone zu verhindern, indem sie, wenn auch in unterschiedlichem Maße, (1) die Reizschwelle der Neuronen-membran erhöhen, (2) die posttetanische Potenzierung der synaptischen Transmission hemmen, (3) die synaptische Erhoiungszeit verlängern oder (4) die prae- und postsynaptische Inhibition potenzieren.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Azzarro AJ, Wenger GR, Craig CR, Stitzel RE (1972) Reserpine-induced alterations in brain amines and their relationship to changes in the incidence of minimal electroshock seizures in mice. J Pharmacol exp Ther 180: 558–568Google Scholar
  2. 2.
    Balâzs R, Machiyama Y, Hammond BJ, Julian T, Richter D (1970) The operation of the 7-amino-butyrate bypath of the tricarboxyclic acid cycle in brain tissue in vitro. Biochem J 116: 445–467PubMedGoogle Scholar
  3. 3.
    Bianchi C, Beani L, Bertelli A (1975) Effects of some anti-epileptic drugs on brain acetylcholine. Neuropharmacology 14: 327–332PubMedCrossRefGoogle Scholar
  4. 4.
    Biggio G, Guidotti A (1977) Regulation of cyclic GMP in cerebellum by a striatal dopaminergic mechanism. Nature 265: 240–242PubMedCrossRefGoogle Scholar
  5. 5.
    Biswas B, Carlsson A (1977) The effect of intracerebroventricularly administered GABA on brain monoamine metabolism. Naunyn-Schmiede-berg’s Arch Pharmacol 299: 41–46CrossRefGoogle Scholar
  6. 6.
    Bonnycastle DD, Giarman NJ, Paasonen MK (19 57) Anticonvulsant compounds and 5-hydroxytryptamine in rat brain. Brit J Pharmacol 12: 228–231Google Scholar
  7. 7.
    Chen G, Ensor CR, Bohner BA (1954) A facilitative action of reserpin on the central nervous system. Proc Soc exp Biol N Y 86: 507–510CrossRefGoogle Scholar
  8. 8.
    Costa E, Guidotti A, Mao CC, Suria A (1975) New concepts on the mechanism of action of benzodiazepines. Life Sci 17: 167–186PubMedCrossRefGoogle Scholar
  9. 9.
    Curtis DR, Duggan AW, Felix D, Johnston GAR (1970) GABA, bicuculline and central inhibition. Nature 226: 1222–1224PubMedCrossRefGoogle Scholar
  10. 10.
    Curtis DR, Duggan AW, Johnston GAR (1971) The specifity of strychnine as a glycine antagonist in the mammalian spinal cord. Exp Brain Res 12: 547–565PubMedCrossRefGoogle Scholar
  11. 11.
    Curtis DR, Felix D, Game CJA, McCullouch RM (1973) Tetanus toxin and the synaptic release of GABA. Brain Res 51 : 358–362PubMedCrossRefGoogle Scholar
  12. 12.
    Diaz PM (1970) Pentylenetetrazol and ethamivan effects on brain serotonin turnover. Life Sci 9: 831–840CrossRefGoogle Scholar
  13. 13.
    Diaz PM (1974) Interaction of pentylenetetrazol and trimethadione on the metabolism of serotonin in brain and its relation to the anticonvulsant action of trimethadione. Neuropharmacology 13: 615–621PubMedCrossRefGoogle Scholar
  14. 14.
    Deteuchi M, Costa E (1973) Pentylenetetrazol convulsions and brain catecholamine turnover rate in rats and mice receiving diphenylhydantoin or benzodiazepines. Neuropharmacology 12: 1059–1072CrossRefGoogle Scholar
  15. 15.
    Elliot KAC, van Gelder NM (1960) The state of Factor I in rat brain: the effects of metabolic conditions and drugs. J Physiol 153: 423–429Google Scholar
  16. 16.
    Enna SJ, Snyder SH (1977) Influences of ions, enzymes, and detergents on 7-aminobutyric acidreceptor binding in synaptic membranes of rat brain. Mol Pharmacol 13: 442–453PubMedGoogle Scholar
  17. 17.
    Evans JPM, Grahame-Smith DG, Green AR, Tordoff AFC (1976) Electroconvulsive shock increases the behavioural responses of rats to brain 5-hydroxytryptamine accumulation and central nervous stimulant drugs. Brit J Pharmacol 56: 193–199CrossRefGoogle Scholar
  18. 18.
    Frey HH, Löscher W (im Druck) Cetyl GABA: Effect on convulsant thresholds in mice and acute toxicity. NeuropharmacologyGoogle Scholar
  19. 19.
    Frey HH, Popp C, Löscher W (1979) Influence of inhibitors of high affinity GABA uptake on the seizure thresholds in mice. Neuropharmacology 18: 581–590PubMedCrossRefGoogle Scholar
  20. 20.
    Gardner CR, Webster RA (1977) Convulsant-anticonvulsant interactions on seizure activity and cortical acetylcholine release. Europ J Pharmacol 42: 247–256CrossRefGoogle Scholar
  21. 21.
    Green AR, Grahame-Smith DG (1975) The effect of diphenylhydantoin on brain 5-hydroxytryptamine metabolism and function. Neuropharmacology 14: 107–113PubMedCrossRefGoogle Scholar
  22. 22.
    Guidotti A, Toffano G, Costa E (1978) An endogenous protein modulates the affinity of GABA and benzodiazepine receptors in rat brain. Nature 275: 553–555PubMedCrossRefGoogle Scholar
  23. 23.
    Gulati OD, Stanton HC (1960) Some effects of the central nervous system of gamma-amino-n-butyric acid (GABA) and certain related amino acids administered systematically and intracerebrally to mice. J Pharmacol exp Ther 129: 178–185PubMedGoogle Scholar
  24. 24.
    Hawkins JE, Sarett LH (1957) On the efficacy of asparagine, glutamine,Tramino butyric acid and 2-pyrrolidinone in preventing chemically induced seizures in mice. Clin Chim Acta 2: 481–484PubMedCrossRefGoogle Scholar
  25. 25.
    Hill RG, Simmonds MA, Straughan DW (1974) Convulsant substances as antagonists of GABA and presynaptic inhibition in the cuneate necleus. Brit J Pharmacol 49: 37–51CrossRefGoogle Scholar
  26. 26.
    Horton RW, Anlezark GM, Sawaya MCB, Meldrum BS (1977) Monoamine and GABA metabolism and the anticonvulsant action of di-n-propyla-cetate and ethanolamine-O-sulphate. Europ J Pharmacol 41: 387–397CrossRefGoogle Scholar
  27. 27.
    Hwang EC, van Woert MH (1979) Effect of valproic acid on serotonin metabolism. Neuropharmacology 18: 391–397PubMedCrossRefGoogle Scholar
  28. 28.
    Iadarola MJ, Gale K (1979) Dissociation between drug-induced increases in nerve terminal and non-nerve terminal pools of GABA in vivo. Europ J Pharmacol 59: 125–129CrossRefGoogle Scholar
  29. 29.
    Iversen LL, Blohm FE (1972) Studies on the uptake of 3H-GABA and 3H-glycine in slices and homogenates of rat brain and spinal cord by electron microscopic autoradiography. Brain Res 41: 131–143PubMedCrossRefGoogle Scholar
  30. 30.
    Kilian M, Frey HH (1973) Central monoamines and convulsive thresholds in mice and rats. Neuropharmacology 12: 681–692PubMedCrossRefGoogle Scholar
  31. 31.
    Killam KF, Bain JA (1957) Convulsant hydrazides I: in vitro and in vivo inhibition of vitamin B 6 enzymes by convulsant hydrazides. J Pharmacol exp Ther 119: 255–262PubMedGoogle Scholar
  32. 32.
    Kobinger W (1958) Beeinflussung der Cardiazolkrampfschwelle durch veränderten 5-HT-Gehalt des Zentralnervensystems. Naunyn-Schmiedeberg’s Arch Pharmacol 233: 559–566CrossRefGoogle Scholar
  33. 33.
    Krogsgaard-Larsen P, Johnston GAR (1975) Inhibition of GABA uptake in rat brain slices by nipecotic acid, various isoxazoles and related compounds. J Neurochem 25: 797–802PubMedCrossRefGoogle Scholar
  34. 34.
    Kuriyama K, Roberts E, Rubinstein MK (1966) Elevation of 7-aminobutyric acid in brain with amino-oxyacetic acid and susceptibility to convulsive seizures in mice: a qualitative réévaluation. Biochem Pharmacol 15: 221–236PubMedCrossRefGoogle Scholar
  35. 35.
    Löscher W (1975) Einfluß klinisch gebräuchlicher Antikonvulsiva auf das r-Aminobuttersäure-System bei der Maus. I.-Diss. Freie Universität Berlin, Fachbereich Veterinärmedizin, BerlinGoogle Scholar
  36. 36.
    Löscher W (1979) 3-Mercaptopropionic Acid: Convulsant properties, effects on enzymes of the 7-aminobutyrate system in mouse brain and antagonism by certain anticonvulsant drugs, aminooxyacetic acid and gabaculine. Biochem Pharmacol 28: 139 7–1407Google Scholar
  37. 37.
    Löscher W, Frey HH (1977) Effect of convulsant and anticonvulsant agents on level and metabolism of 7-aminobutyric acid in mouse brain. Naunyn-Schmiedeberg’s Arch Pharmacol 296: 263–269CrossRefGoogle Scholar
  38. 38.
    Löscher W, Frey HH (1978) Aminooxyacetic acid: Correlation between biochemical effects, anticonvulsant action and toxicity in mice. Biochem Pharmacol 27: 103–108PubMedCrossRefGoogle Scholar
  39. 39.
    Lust WD, Kupferberg HJ, Yonekawa WD, Penry JK, Passonneau JV, Wheaton AB (1978) Changes in brain metabolites induced by convulsants or electroshock: Effects of anticonvulsant agents. Molec Pharmacol 14: 347–356Google Scholar
  40. 40.
    Mao CC, Guidotti A, Costa E (1974) The regulation of cyclic guanosine monophosphate in rat cerebellum: Possible involvement of putative amino acid neurotransmitters. Brain Res 79: 510–514PubMedCrossRefGoogle Scholar
  41. 41.
    Mao CC, Guidotti A, Costa E (1974) Interactions between 7-amino-butyric acid and guanosine cyclic 3,5-monophosphate in rat cerebellum. Molec Pharmacol 10: 736–745Google Scholar
  42. 42.
    Mao CC, Guidotti A, Costa E (1975) Evidence for an involvement of GABA in the mediation of the cerebellar cGMP decrease and the anticonvulsant action of diazepam. Naunyn-Schmiedeberg’s Arch Pharmacol 289: 369–378CrossRefGoogle Scholar
  43. 43.
    Marsden CD (1979) GABA in relation to extrapyramidal diseases, with particular relevance to animal models. In: Krogsgaard-Larsen P, Scheel-Krüger J, Kofod H (eds) GABA-Neurotransmitters. Pharmacochemical, biochemical and pharmacological aspects. Munksgaard, Copenhagen, p 295–307Google Scholar
  44. 44.
    McMillan BA, Isaac L (1978) Effects of pentylenetetrazole and trimethadione on feline brain monoamine metabolism. Biochem Pharmacol 27: 1815–1820CrossRefGoogle Scholar
  45. 45.
    Meyer H, Frey HH (1973) Dependence of anticonvulsant drug action on central monoamines. Neuropharmacology 12: 939–947PubMedCrossRefGoogle Scholar
  46. 46.
    Naik SR, Guidotti A, Costa E (1976) Central GABA receptor agonists: Comparison of muscimol and baclofen. Neuropharmacology 15: 479–484PubMedCrossRefGoogle Scholar
  47. 47.
    Nathanson JA (1977) Cyclic Nucleotides and nervous system function. Physiol Rev 57: 157–256PubMedGoogle Scholar
  48. 48.
    Olsen RW, Ticku MK, van Ness PC, Greenlee D (1978) Effects of drugs on T-aminobutyric acid receptors, uptake, release and synthesis in vitro. Brain Res 139: 277–294PubMedCrossRefGoogle Scholar
  49. 49.
    Phillis JW (1968) Acetylcholine release from the cerebral cortex. Its role in cortical arousal. Brain Res 7: 378–389PubMedCrossRefGoogle Scholar
  50. 50.
    Pole P, Haefely W (1976) Effect of two benzodiazepines, pheno-barbitone, and baclofen on synaptic transmission in the cat cuneate nucleus. Naunyn-Schmiedeberg’s Arch Pharmacol 294: 121–131CrossRefGoogle Scholar
  51. 51.
    Pope A, Morris AA, Jasper HH, Elliot KAC, Penfield W (1947) Histochemical and action potential studies on epileptogenic areas of cerebral cortex in man and the monkey. Res Pubi Ass Res Nerv Ment 26: 218–227Google Scholar
  52. 52.
    Popp C (1978) Einfluß von Hemmstoffen des high affinity GABA-uptake auf die Krampfempfindlichkeit bei der Maus. I.-Diss., Freie Universität Berlin, Fachbereich Veterinärmedizin, BerlinGoogle Scholar
  53. 53.
    Prockop DJ, Shore PA, Brodie BB (1959) An anticonvulsant effect of monoamine oxidase inhibitors. Experentia 15: 145–147Google Scholar
  54. 54.
    Radouco-Thomas C, Frommel E, Radouco-Thomas S (1955) Medication antiépileptique et activité cholinestêrasique. Helv Physiol Acta 13: 1–13Google Scholar
  55. 55.
    Roa PD, Tews JK, Stone WE (1964) A neurochemical study of thiosemicarbazide seizures and their inhibition by amino-oxyace-tic acid. Biochem Pharmacol 13: 477–485PubMedCrossRefGoogle Scholar
  56. 56.
    Rodriquez de Lores Arnaiz G, Alberici de Canal M de Robertis EGoogle Scholar
  57. (1972).
    Alteration of GABA system and Purkinje cells in rat cerebellum by the convulsant 3-mercaptopropionic acid. J Neuro-chem 19: 1379–1385Google Scholar
  58. 57.
    Rudzik AD, Johnson GA (1970) Effect of amphetamine and amphetamine analoques on convulsive thresholds. In: Costa E, Garattini S (eds) Amphetamines and related compounds. Raven Press, New York, p 715–728Google Scholar
  59. 58.
    Sellström A, Sjöberg LB, Hamberger A (1975) Neuronal and glial systems for 7-aminobutyric acid metabolism. J Neurochem 25: 393–398PubMedCrossRefGoogle Scholar
  60. 59.
    Simler S, Ciesielski L, Maitre M, Randrianarisoa H, Mandel PGoogle Scholar
  61. (1973).
    Effect of sodium n-dipropylacetat on audiogenic seizures and brain 7-aminobutyric acid level. Biochem Pharmacol 22: 1701–1708Google Scholar
  62. 60.
    Snyder SH (1975) The glycine synaptic receptor in the mammalian central nervous system. Brit J Pharmacol 53: 473–484CrossRefGoogle Scholar
  63. 61.
    Squires RF, Braestrup C (1977) Benzodiazepine receptors in rat brain. Nature 226: 732–734CrossRefGoogle Scholar
  64. 62.
    Stone WE (1957) The role of acetylcholine in brain metabolism and function. Amer J Phys Med 36: 222–236PubMedGoogle Scholar
  65. 63.
    Sytinski IA, Soldatenkow AT, Lajtha A (1978) Neurochemical basis of the therapeutic effect of 7-aminobutyric acid and its derivatives. Progr Neurobiol 10: 89–133CrossRefGoogle Scholar
  66. 64.
    Weinberger J, Nicklas WJ, Beri S (1976) Mechanism of action of anticonvulsants. Neurology 26: 162–166PubMedCrossRefGoogle Scholar
  67. 65.
    Wiechert P, Göllnitz G (1968) Stoffwechseluntersuchung des cerebralen Anfallgeschehens. Die Aktivität der Glutamatdecarboxylase vor und während experimentell ausgelöster Krampfanfälle. J Neuro-chem 15: 1265–1272Google Scholar
  68. 66.
    Wood JD, Kurylo E, Dewstead JD (1978) Aminooxyacetic acid induced changes in 7-aminobutyrate metabolism at the subcellular level. Can J Biochem 56: 667–672PubMedCrossRefGoogle Scholar
  69. 67.
    Woodbury DM, Kemp JW (1970) Some possible mechanisms of action of antiepileptic drugs Pharmakopsychiat Neuro-Psychopharmakol 3: 201–226CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1980

Authors and Affiliations

  • W. Löscher

There are no affiliations available

Personalised recommendations