# Linear Hyperbolic Equations

• V. Ya. Ivrii
Part of the Encyclopaedia of Mathematical Sciences book series (EMS, volume 33)

## Abstract

The present survey is devoted to the linear hyperbolic equations and systems. The concept of a hyperbolic equation first appeared in the case of a second-order equation
$$Pu = \sum\limits_{i,j = 0}^n {{a_{ij}}} {\partial _i}{\partial _j}u = 0$$
(0.1)
with constant coefficients. It implied that the quadratic form $$a\left( \xi \right) = \sum {_{i,j = 1}^n} {a_{ij}}{\xi _i}{\xi _j}$$ is hyperbolic, that is, its positive subspaces are of dimension 1 and the negative subspaces of dimension n − 1 (or vice-versa). But now such equations are referred to as strictly hyperbolic; a hyperbolic equation may have its quadratic form a(·) degenerate (parabolically degenerate, in old terminology). In this case, the equation (0.1) has solutions of the type of moving (plane) waves u = v(〈x, ξ〉), where $$\left\langle {x,\xi } \right\rangle = {x_0}{\kern 1pt} {\xi _0} + \cdot \cdot \cdot + {x_n}{\xi _n},{\kern 1pt} {\kern 1pt} a\left( \xi \right) = 0$$ and v is an arbitrary function of a single variable. If n = 1, the general solution of (0.1) is a linear combination of two moving waves, and on the basis of this fact we can easily solve the Cauchy problem with data prescribed on any non-characteristic curve (that is, on a curve γ such that a(N) ≠ 0, where N is the normal to γ), and even suitable mixed problems. Moreover, the Cauchy problem is uniquely solvable and there exists a triangle of dependence; the same is true for non-homogeneous equations. When lower terms are present, the Cauchy problem and the mixed problem can be solved, in principle at least, by the method of successive approximation, just as it is done in the case of the Cauchy problem for ordinary differential equations. Similar construction is available for the case of variable coefficients also, and again the non-characteristic Cauchy problem is uniquely solvable and there is a characteristic triangle of dependence (now curvilinear). These statements do not hold for equations of other types. Therefore, apart from the algebraic definition of hyperbolicity, it is possible to give a meaningful and close analytical definition: a given equation (system) is hyperbolic if some non-characteristic Cauchy problem for it is uniquely solvable for any smooth right-hand sides and initial data and if there exists a cone of dependence. This fact was already recognised in the last century, and from that time the algebraic definition of hyperbolicity was extended to systems of first order, to equations and systems of higher orders and with a large number of independent variables in such a way that it remained meaningfully close to the analytical definition.

### Keywords

Manifold Propa Hull Refraction KIII

## Preview

### References

1. Agemi, R., Shirota, T. [ 1970 ] On necessary and sufficient conditions for L2-well-posedness of mixed problems for hyperbolic equations I. J. Fac. Sci., Hokkaido Univ., Ser. I. 21, No. 2, 133–151, Zb1. 207, 403Google Scholar
2. Agemi, R., Shirota, T. [ 1971 ] On necessary and sufficient conditions for L2-well-posedness of mixed problems for hyperbolic equations II. ibid. 22, No. 3, 137–149, Zb1. 241. 35055Google Scholar
3. Agranovich, M.S. [ 1969 ] Boundary-value problems for systems of first order pseudodifferential operators. Usp.Mat. Nauk 24, No. 1, 61–125. English transi.: Russ. Math. Surv. 24, No. 1, 59–126 (1969), Zb1. 175, 108Google Scholar
4. Agranovich, M.S. [ 1972 ] A theorem on matrices depending on parameters and its applications to hyperbolic systems. Funkts. Anal. Prilozh. 6, No. 2, 1–11. English transl.: Funct. Anal. Appl. 6, 85–93 (1972), Zb1. 253. 35060Google Scholar
5. Alinhac, S. [ 1978 ] Branching of singularities for a class of hyperbolic operators. Indiana Univ. Math. J. 27,No. 6, 1027–1037, Zb1. 502. 35058Google Scholar
6. Atiyah, M.F., Bott, R., Gàrding, L. [ 1970 ] Lacunas for hyperbolic differential operators with constant coefficients. I. Acta Math.124, 109–189, Zb1. 191, 112Google Scholar
7. Atiyah, M.F., Bott, R., Gàrding, L. [ 1973 ] Lacunas for hyperbolic differential operators with constant coefficients. II. ibid. 131,145–206, Zb1. 266. 35045Google Scholar
8. Babich, V.M. [ 1960 ] Fundamental solutions of hyperbolic equations with variable coefficients. Mat. Sb. Nov.Ser. 52, No. 2, 709–738, Zb1. 96, 67Google Scholar
9. Bronshtejn, M.D. [ 1979 ] Smoothness of roots of polynomials depending on parameters. Sib. Mat. Zh. 20, No. 3,493–501. English transi.: Sib. Math. J. 20, 347–352 (1980), Zb1. 415. 30003Google Scholar
10. Bronshtejn, M.D. [ 1980 ] The Cauchy problem for hyperbolic operators with characteristics of variable multiplicity. Tr. Mosk. Mat. 0.-va 41, 83–99. English transi.: Trans. Mosc. Math. Soc. 1982, No. 1, 87–103 (1982), Zb1. 468. 35062Google Scholar
11. Chazarain, J. [ 1974 ] Operateurs hyperboliques à caracteristiques de multiplicité constante. Ann. Inst.Fourier. 24, No. 1, 173–202, Zb1. 274. 35045Google Scholar
12. Chazarain, J. [ 1977 ] Reflection of C°-singularities for a class of operators with multiple characteristics. Publ.Res. Inst. Math. Sci., Kyoto Univ. 12, Suppl., 39–52, Zb1. 365. 35050Google Scholar
13. Colombini, F., Jannelli, E., Spagnolo, S. [ 1986 ] Non-uniqueness examples for second-order hyperbolic equations. Current Topics in Partial Differential Equations. Pap. dedic. S. Mizohata, 309–326, Zb1. 627. 35053Google Scholar
14. Demay, Y. [ 1977 ] Pararetrix pour des systèmes hyperboliques du premier ordre à multiplicité constante. J. Math. Pures Appl. 56, No. 4, 393–422, Zb1. 379. 35068Google Scholar
15. Dencker, N. [ 1982 ] On the propagation of polarization sets for systems of real principal type. J. Funct. Anal.46, No. 3, 351–372, Zb1. 487. 58028Google Scholar
16. Dencker, N. [ 1986 ] On the propagation of polarization in conical refraction. Preprint, Univ. Lund, 3, 88 pp.Appeared in: Duke Math. J. 57, No. 1, 85–134 (1988), Zb1.669.35116Google Scholar
17. Duff, G.F.D. [ 1959 ] Mixed problems for hyperbolic equations of general order. Can. J. Math. 9, 195–221,Zb1. 86, 76Google Scholar
18. Duistermaat, J.J., Hörmander, L. [ 1972 ] Fourier integral operators. II. Acta Math. 128, No. 3–4, 183–269, Zb1. 232, 47055Google Scholar
19. Eskin, G. [ 1976 ] A parametrix for mixed problems for strictly hyperbolic equations of arbitrary order.Commun. Partial Differ. Equations 1, No. 6, 521–560, Zb1. 355. 35053Google Scholar
20. Eskin, G. [ 1977 ] Parametrix and propagation of singularities for the interior mixed hyperbolic problem. J. Anal. Math. 32, 17–62, Zb1. 375. 35037Google Scholar
21. Eskin, G. [1979 80] Well-posedness and propagation of singularities for initial boundary value problems for second order hyperbolic equations with general boundary conditions. Semin. Goulaouic-Schwartz, Exp. No. 11, 14 pp.Google Scholar
22. Eskin, G. [ 1981a ] Initial boundary value problem for second order hyperbolic equations with general boundary conditions. I. J. Anal. Math. 40, 43–89, Zb1. 492. 35042Google Scholar
23. Eskin, G. [ 1981b ] General initial-boundary problems for second order hyperbolic equations. Singularities in boundary value problems. Proc. NATO Adv. Stud. Inst., Maratea Italy 1980, 19–54, Zb1. 475. 35061Google Scholar
24. Eskin, G. [ 1985 ] Initial-boundary value problems for second order hyperbolic equations with general boundary conditions. II. Commun. Partial Differ. Equations 10, No. 10, 1117–1212, Zb1. 585. 35059Google Scholar
25. Esser, P. [ 1986 ] Polarisation analytique dans les problèmes aux limites non-diffractifs de multiplicité constante. Bull. Soc. R. Sci. Liege 55, No. 3, 371–465, Zb1. 603. 35089Google Scholar
26. Fedoryuk, M.V. [ 1977 ] Singularities of the kernels of Fourier integral operators and asymptotics of the solu-tions of mixed problems. Usp Mat. Nauk 32, No. 6, 67–115. English transl.: Russ. Math. Surv. 32, No. 6, 67–120 (1977), Zb1. 376. 35001Google Scholar
27. Flaschka, H., Strang, G. [ 1971 ] The correctness of the Cauchy problem. Adv. Math. 6, No. 3, 347–379, Zb1.213,373Friedlander, F.G.Google Scholar
28. Flaschka, H., Strang, G. [ 1976 ] The wave front set of the solution of a simple initial-boundary value problem with glancing rays. I. Math. Proc. Camb. Philos. Soc. 79, No. 1, 145–159, Zb1.319. 35053 Friedlander, F.G., Melrose, R.B.Google Scholar
29. Flaschka, H., Strang, G. [ 1977 ] The wave front set of solutions of a simple initial-boundary value problem with glancing rays. II. Math. Proc. Camb. Philos. Soc. 81, No. 1, 97–120, Zb1.356. 35056 Friedrichs, K.Q.Google Scholar
30. Flaschka, H., Strang, G. [ 1958 ] Symmetric positive linear differential equations. Commun. Pure Appl. Math. 11, 333–418, Zb1. 83, 318Google Scholar
31. Garding, L. [ 1951 ] Linear hyperbolic partial differential equations with constant coefficients. Acta Math.85, No. 1, 1–62, Zb1. 45, 202Google Scholar
32. Garding, L. [ 1957 ] Cauchy’s problem for hyperbolic equations. Univ. Chicago, Zb1. 91, 269Google Scholar
33. Garding, L. [ 1982 ] Hyperbolic boundary problems. Differential Geometry and Differential Equations,Proc. 1980 Beijing Symp., Vol. 1, 371–465, Zb1. 527. 35051Google Scholar
34. Garding, L. [ 1984 ] Hyperbolic differential operators. Perspective in Math., Anniv. Oberwolfach 1984,215–247, Zb1. 572. 35012Google Scholar
35. Hadamard, J. [ 1932 ] Le problème de Cauchy et les équations aux dérives partielles lineaires hyperboliques.Paris, Zb1. 6, 205Google Scholar
36. Hörmander, L. [ 1963 ] Linear Partial Differential Operators. Berlin-Heidelberg-New York: Springer-Verlag,Zb1. 108, 93Google Scholar
37. Hörmander, L. [ 1971 ] Fourier integral operators. I. Acta Math. 127, No. 1–2, 79–183, Zb1. 212, 466Google Scholar
38. Hörmander, L. [ 1977 ] The Cauchy problem for differential equations with double characteristics. J. Anal.Math. 32, 118–196, Zb1. 367. 35054Google Scholar
39. Hörmander, L. [ 1983 ] The Analysis of Linear Partial Differential Operators. Vols. I and II. Berlin-Heidelberg-New York: Springer-Verlag, Zb1.521.35001 and Zb1. 521. 35002Google Scholar
40. Hörmander, L. [ 1985 ] The Analysis of Linear Partial Differential Operators. Vols. III and IV. Berlin-Heidelberg-New York: Springer-Verlag, Zb1.601.35001 and Zb1. 612. 35001Google Scholar
41. Ikawa, M. [ 1981 ] Mixed problems for the wave equation. Singularities in Boundary-Value Problems.Proc. NATO Adv. Stud. Inst., Marateo Italy 1980, 97–119. Zb1. 473. 35047Google Scholar
42. Ivrii, V.Ya. (= Ivrij, V.Ya.) [ 1975 ] Well-posedness in Gevrey classes of the Cauchy problem for non-strictly hyperbolic operators. Mat. Sb., Nov. Ser. 96, No. 3, 390–413. English transi.: Math. USSR, Sb. 25 (1975), 365–387 (1976). Zb1. 319. 35054Google Scholar
43. Ivrii, V.Ya. (= Ivrij, V.Ya.) [ 1976a ] Sufficient conditions for regular and completely regular hyperbolicity. Tr. Mosk. Mat.0.-va 33, 3–65. English transi.: Trans. Mosc. Math. Soc. 33,1–65 (1978), Zb1. 355. 35052Google Scholar
44. Ivrii, V.Ya. (= Ivrij, V.Ya.) [ 1976b ] Well-posedness conditions in Gevrey classes for the Cauchy problem for non-strictly hyperbolic operators. Sib. Mat. Zh. 17, No. 3, 547–563. English transi.: Sib. Math. J. 17 (1976), 422–435 (1977), Zb1.338. 35088230 V.Ya. IvriiGoogle Scholar
45. Ivrii, V.Ya. (= Ivrij, V.Ya.) [ 1976c ] Well-posedness conditions in Gevrey classes for the Cauchy problem for hyperbolic operators with characteristics of variable multiplicity. Sib. Mat. Zh. 17, No. 6, 12561270. English transi.: Sib. Math. J. 17, 921–931 (1977), Zb1. 404. 35068Google Scholar
46. Ivrii, V.Ya. (= Ivrij, V.Ya.) [ 1977 ] The well-posed Cauchy problem for non-strictly hyperbolic operators. III. The energy integral. Tr. Mosk. Mat. 0.-va 34, 151–170. English transi.: Trans. Mosc. Math. Soc. 34, 149–168 (1978), Zb1. 403. 35060Google Scholar
47. Ivrii, V.Ya. (= Ivrij, V.Ya.) [1978] Well-posedness in Gevrey classes of the Cauchy problem for non-strictly hyperbolic operators. Izv. Vyssh. Uchebn. Zaved. Mat. 1978, No. 2, 26–35, Zb1. 395. 35055Google Scholar
48. Ivrii, V.Ya. (= Ivrij, V.Ya.) [ 1979a ] Wave fronts of solutions of some pseudodifferential equations. Tr. Mosk. Mat. 0.-va 39, 49–82. English transi.: Trans. Mosc. Math. Soc. 1981, No. 1, 49–86 (1981), Zbl. 433. 35077Google Scholar
49. Ivrii, V.Ya. (= Ivrij, V.Ya.) [19796] Wave fronts of solutions of some hyperbolic pseudodifferential equations. Tr. Mosk.Mat. 0.-va 39, 83–112. English transi.: Trans. Mosc. Math. Soc. 1981, No. 1, 87–119 (1981), Zb1. 433. 35078Google Scholar
50. Ivrii, V.Ya. (= Ivrij, V.Ya.) [ 1979c ] Wave fronts of solutions of symmetric pseudodifferential systems. Sib. Mat. Zh. 20,No. 3, 557–578. English transi.: Sib. Math. J. 20, 390–405 (1980), Zb1. 417. 35080Google Scholar
51. Ivrii, V.Ya. (= Ivrij, V.Ya.) [ 1979d ] Wave fronts of solutions of boundary-value problems for symmetric hyperbolic systems.I. Sib. Mat. Zh. 20, No: 4, 741–755. English transl.: Sib. Math. J. 20, 516–524 (1980), Zb1. 454. 35055Google Scholar
52. Ivrii, V.Ya. (= Ivrij, V.Ya.) [ 1979e ] Wave fronts of solutions of boundary-value problems for symmetric hyperbolic systems.II. Sib. Mat. Zh. 20, No. 5, 1022–1038. English transl.: Sib. Math. J. 20, 722–734 (1980), Zb1. 454. 35056Google Scholar
53. Ivrii, V.Ya. (= Ivrij, V.Ya.) [ 1980a ] Wave fronts of solutions of boundary-value problems for symmetric hyperbolic systems.III. Sib. Mat. Zh. 21, No. 1, 74–81. English transl.: Sib. Math. J. 21, 54–60 (1980), Zb1. 454. 35057Google Scholar
54. Ivrii, V.Ya. (= Ivrij, V.Ya.) [ 1980b ] Wave fronts of solutions of boundary-value problems for a class of symmetric hyper-bolic systems. Sib. Mat. Zh. 21, No. 4, 62–71. English transl.: Sib. Math. J. 21, 527–534 (1981), Zb1. 447. 35055Google Scholar
55. Ivrii, V.Ya. (= Ivrij, V.Ya.) [ 1981 ] The propagation of singularities of solutions of non-classical boundary-value problems for hyperbolic equations of second order. Tr. Mosk. Mat. 0.-va 43, 81–91. English transl.: Trans. Mosc. Math. Soc. 1983, No. 1, 87–99 (1983), Zb1. 507. 35059Google Scholar
56. Ivrii, V.Ya. (= Ivrij, V.Ya.) [ 1986 ] The propagation of singularities of solutions of dissipative boundary-value problems for symmetric hyperbolic systems. Dokl. Akad. Nauk SSSR 287, No. 6, 1299–1301. English transi.: Soy. Math., Dokl. 33, 526–529 (1986), Zb1. 626. 35057Google Scholar
57. Ivrii, V.Ya; Petkov, V.M. (= Ivrij, V.Ya.; Petkov, V.M.) [ 1974 ] Necessary conditions for the well-posedness of the Cauchy problem for non-strictly hyperbolic equations. Usp Mat. Nauk 29, No. 5, 3–70. English transl.: Russ. Math. Surv. 29, No. 5, 1–70 (1974), Zb1. 312. 35049Google Scholar
58. Iwasaki, N. [ 1983a ] The Cauchy problem for hyperbolic equations with double characteristics. Publ. Res.Inst. Math. Sci. 19, No. 3, 927–942, Zb1. 571. 35067Google Scholar
59. Iwasaki, N. [ 1983b ] The Cauchy problem for effectively hyperbolic equations (A special case). J. Math.Kyoto Univ. 23, 503–562, Zb1. 546. 35037Google Scholar
60. Iwasaki, N. [ 1984 ] Cauchy problems for effectively hyperbolic equations (A standard type). Publ. Res. Inst.Math. Sci. 20, No. 3, 543–584, Zb1. 565. 35065Google Scholar
61. John, F. [ 1978 ] Algebraic conditions for hyperbolicity of systems of partial differential equations.Commun. Pure Appl. Math. 31, No. 1, 89–106, Zb1. 381. 35059Google Scholar
62. Kajitani, K. [ 1983 ] Cauchy problem for nonstrictly hyperbolic systems in Gevrey classes. J. Math. Kyoto Univ. 23, No. 3, 599–616, Zb1. 544. 35063Google Scholar
63. Kajitani, K. [ 1986 ] The Cauchy problem for uniformly diagonalizable hyperbolic systems in Gevrey classes.In: Mizohata (Ed.): Hyperbolic Equations and Related Topics, Proc. Taniguchi Int. Symp. Katata and Kyoto 1984, 101–123, Zb1.669.35065Google Scholar
64. Kataoka, K. [ 1981 ] Microlocal analysis of boundary-value problems with application to diffraction. Singu-larities in Boundary-Value Problems. Proc. NATO Adv. Stud. Inst., Marateo Italy 1980, 121–131, Zb1. 461. 35088Google Scholar
65. Komatsu, H. [ 1977 ] Irregularity of characteristic elements and hyperbolicity. Publ. Res. Inst. Math. Sci. 12,Suppl., 233–245, Zb1. 375. 35044Google Scholar
66. Kreiss, H.O. [ 1970 ] Initial-boundary value problems for hyperbolic systems. Commun. Pure Appl. Math.23, 277–298, Zb1. 193, 69Google Scholar
67. Kubota, K. [ 1986 ] Microlocal parametrices and propagation of singularities near gliding points for hyper-bolic mixed problems. I. Hokkaido Math J. 15, No. 2, 243–308, Zb1.619. 35071 Kucherenko, V.V. \Google Scholar
68. Kubota, K. [ 1974 ] Asymptotics, as h -* 0, of solutions of the system A I x,- h exI u = 0 in the case of characteristics of variable multiplicity. Izv. Akad. Nauk SSSR, Ser. Mat 38, 625–662. English transi.: Math. USSR, Izvestija 8 (1974), 631–666 (1975), Zb1.308. 35080 Kucherenko, V.V., Osipov, Yu. V.Google Scholar
69. Kubota, K. [ 1983 ] The Cauchy problem for non-strictly hyperbolic equations. Mat. Sb., Nov. Ser. 120,No. 1, 84–111. English transi.: Math. USSR, Sb. 48, 81–109 (1984), Zb1.519. 35048 Kumano-go, H.Google Scholar
70. Kubota, K. [ 1979 ] Fundamental solution for a hyperbolic system with diagonal principal part. Commun.Partial Differ. Equations 4, No. 9, 959–1015, Zb1. 431. 35062Google Scholar
71. Kumano-go, H., Taniguchi, K. [ 1979 ] Fourier integral operators of multiphase and the fundamental solution to a hyperbolic system. Funkc. Ekvacioj, Ser. Int. 22, No. 2, 161–196, Zb1. 568. 35092Google Scholar
72. Lascar, R. [ 1981 ] Propagation des singularités des solutions d’équations pseudodifferentielles à carac-teristiques de multiplicités variables. Lect. Notes Math. 856, Zb1. 482. 58031Google Scholar
73. Laubin, P. [ 1986 ] Asymptotic solutions of hyperbolic boundary value problems with diffraction. Advances in Microlocal Analysis. NATO ASI Ser., Ser. C 168, 165–202, Zb1. 601. 35113Google Scholar
74. Lax, P.D. [ 1957 ] Asymptotic solutions of oscillatory initial value problems. Duke Math. J. 24, No. 4,627–646, Zb1. 83, 318Google Scholar
75. Lax, P.D., Phillips, R.S. [ 1960 ] Local boundary conditions for dissipative symmetric linear differential operators.Commun. Pure Appl. Math. 13, 427–455, Zb1. 94, 75Google Scholar
76. Lebeau, G. [ 1984 ] Regularité Gevrey 3 pour la diffraction. Commun. Partial Differ. Equations 9, No. 15,1437–1494, Zb1. 559. 35019Google Scholar
77. Lebeau, G. [ 1986 ] Propagation des singularités Gevrey pour le problème de Dirichlet. Advances in Microlocal Analysis. NATO ASI Ser., Ser. C 168, 203–223, Zb1. 603. 35015Google Scholar
78. Leray, J. [ 1954 ] Hyperbolic Differential Equations. Princeton: Inst. Adv. Study, Zb.1. 75, 98Google Scholar
79. Maslov, V.P. [ 1965 ] Theory of Perturbations and Asymptotic Methods. Moscow: Moskov. Gos. Univ.French translation: Paris: Dunod (1972), Zb1. 247. 47010Google Scholar
80. Maslov, V.P. [ 1983 ] Non-standard characteristics in asymptotic problems. Usp. Mat. Nauk 38, No. 6, 3–36.English transi.: Russ. Math. Surv. 38, 1–42 (1983), Zb1. 562. 35007Google Scholar
81. Maslov, V.P., Fedoryuk, M.V. [ 1973 ] The canonical operator (real case). Itogi Nauki Tek. Ser., Sovrem. Probl. Mat. 1,85–167. English transi.: J. Sov. Math. 3, 217–279 (1975), Zb1. 303. 35069Google Scholar
82. Maslov, V.P., Fedoryuk, M.V. [ 1976 ] Quasi-Classical Approximation to Equations of Quantum Mechanics. Moscow:Nauka. English transi.: Dordrecht-Boston-London: D. Reidel (1981), Zb1.449. 58002 Melrose, R.B.Google Scholar
83. Melrose, R.B. [ 1975 ] Local Fourier-Airy integral operators. Microlocal parametrices for diffractive bound-ary-value problems. Duke Math. J. 42, No. 4, 583–604, Zb1.368.35054, 605–635, Zb1. 368. 35055Google Scholar
84. Melrose, R.B. [ 1978 ] Airy operators. Commun. Partial Differ. Equations 3, No. 1, 1–76, Zb1. 384. 35052Google Scholar
85. Melrose, R.B. [ 1981 ] Transformation of boundary value problems. Acta Math. 147, 149 236, Zb1. 492. 58023Google Scholar
86. Melrose, R.B. [ 1983 ] The Cauchy problem for effectively hyperbolic operators. Hokkaido Math. J. 12, 371–391, Zb1. 544. 35094Google Scholar
87. Melrose, R.B. [ 1986 ] Propagation for the wave group of positive subelliptic second-order differential opera-tors. In: Mizohata (Ed.): Hyperbolic Equations and Related Problems, Proc. Taniguchi Int. Symp., Katata and Kyoto 1984, 181–192, Zb1. 696. 35064Google Scholar
88. Melrose, R.B., Sjöstrand, J. [ 1978 ] Singularities of boundary value problems. I. Commun. Pure Appl. Math. 31, 593–617,Zb1. 368. 35020Google Scholar
89. Melrose, R.B., Sjöstrand, J. [ 1982 ] Singularities of boundary value problems. II. ibid. 35, 129–168, Zb1. 546. 35083Google Scholar
90. Melrose, R.B., Uhlmann, G.A. [ 1979a ] Lagrangian intersection and the Cauchy problem. Commun. Pure Appl. Math. 32,483–519, Zb1. 396. 58006Google Scholar
91. Melrose, R.B., Uhlmann, G.A. [ 1979b ] Microlocal structure of involutive conical refraction. Duke Math. J. 46, No. 3, 571–582,Zb1. 422. 58026Google Scholar
92. Miyatake, S. [ 1975 ] Mixed problems for hyperbolic equations of second order with first order complex boundary operators. J.pan J. Math. New Ser. 1, No. 1, 111–158, Zb1. 337. 35047Google Scholar
93. Miyatake, S. [ 1977 ] A sharp form of the existence theorem for hyperbolic mixed problems of second order. J. Math. Kyoto Univ., 17, No. 2, 199–223, Zb1. 374. 35028Google Scholar
94. Mizohata, S. [ 1961 ] Some remarks on the Cauchy problem. J. Math. Kyoto Univ. 1, No. 1, 109–127, Zbl. 104, 319Google Scholar
95. Miyatake, S. [ 1986a ] Comments on the development of hyperbolic analysis. In: Mizohata, S. (Ed.): Hyper-bolic Equations and Related Topics, Proc. Taniguchi Int. Symp., Katata and Kyoto 1984, IX-XXXIV (1986), Zb1. 674. 35054Google Scholar
96. Miyatake, S. [1986b] (Ed.) Hyperbolic Equations and Related Topics. Proc. Taniguchi Int. Symp., Katata and Kyoto 1984. Boston: Acad. Press, Zb1.643.00010Google Scholar
97. Nishitani, T. [ 1978 ] On the Lax-Mizohata theorem in the analytic and Gevrey classes. J. Math. Kyoto Univ.18, No. 3, 509–521, Zb1. 402. 35093Google Scholar
98. Nishitani, T. [ 1983a ] Energy inequality for non-strictly hyperbolic operators in Gevrey class. J. Math. Kyoto Univ. 23, No. 4, 739–773, Zb1. 552. 35051Google Scholar
99. Nishitani, T. [ 1983b ] On wave front sets of solutions for effectively hyperbolic operators. Sci. Rep., Osaka 32,No. 2, 1–7, Zb1. 548. 35006Google Scholar
100. Nishitani, T. [ 1984a ] A necessary and sufficient condiition for the hyperbolicity of second order equations in two independent variables. J. Math. Kyoto Univ. 24, No. 1, 91–104, Zb1.552.35049 [1984b] Local energy integrals for effectively hyperbolic operators. I, II. J. Math. Kyoto Univ. 24, No. 4, 623–658, Zb1.582.58035, 659–666, Zb1. 589. 35078Google Scholar
101. Nishitani, T. [ 1985 ] On strong hyperbolicity for first order systems. Proc. Japan Acad., Ser. A 61, No. 7,193–196, Zb1. 579. 35046Google Scholar
102. Nishitani, T. [ 1986 ] Microlocal energy estimates for hyperbolic operators with double characteristics. In:Mizohata (Ed.): Hyperbolic Equations and Related Topics, Proc. Taniguchi Int. Symp., Katata and Kyoto Jap. 1984, 235–255, Zb1.665.35007Google Scholar
103. Nuij, W. [ 1968 ] A note on hyperbolic polynomials. Math. Scand. 23, No. 1, 69–72, Zb1. 189, 408Google Scholar
104. Ohya, Yu., Tarama, S. [ 1986 ] La problème de Cauchy à caracteristiques multiples dans la classe de Gevrey-coefficients hölderiens en t. In: Mizohata (Ed.): Hyperbolic Equations and Related Topics, Proc. Taniguchi Int. Symp., Katata and Kyoto Jap. 1984, 273–306, Zb1. 665. 35045Google Scholar
105. Olejnik, O.A. [ 1970 ] On the Cauchy problem for weakly hyperbolic equations. Commun. Pure Appl. Math.23, No. 6, 569–586, Zb1. 193, 386Google Scholar
106. Petkov, V.M. [ 1975 ] Necessary condition for well-posedness of the Cauchy problem for non-symmetrizable hyperbolic systems. Tr. Semin. I.G. Petrovskogo 1, 211–236. English transi.: Transi., II. Ser., Am. Math. Soc. 118, 25–50 (1982), Zb1. 317. 35055Google Scholar
107. Petkov, V.M. [ 1978 ] A parametrix of the Cauchy problem for non-symmetrizable hyperbolic systems with characteristics of constant multiplicity. Tr. Mosk. Mat. 0.-va 37, 3–47. English transi.: Trans. Mosc. Math. Soc. 1, 1–47 (1980), Zb1. 442. 35067Google Scholar
108. Petkov, V.M. [ 1981 ] Propagation des singularites sur le bord pour des systèmes hyperboliques à carac-teristiques de multiplicité constante. C.R. Acad. Sci., Paris, Ser. I. 293, 637–639, Zb1. 487. 35059Google Scholar
109. Petkov, V.M., Kutev, N.D. [ 1976 ] On regularly hyperbolic systems of first order. God. Sofij Univ., Fak. Mat. Mekh. 67,375–389, Zb1. 353. 35061Google Scholar
110. Petrovskij, I.G. [ 1938 ] On the Cauchy problem for systems of linear partial differential equations. Bull. Univ.Mosk., Ser. Int. Mat. Mekh. 1, No. 7, 1–74, Zb1. 24, 37Google Scholar
111. Petrovskij, I.G. [ 1986 ] Selected Works. Systems of Partial Differential Equations. Algebraic Geometry.Moscow: Nauka, Zb1. 603. 01018Google Scholar
112. Ralston, J.V. [ 1971 ] Note on a paper of Kreiss. Commun. Pure Appl. Math. 24, 759–762, Zb1. 215, 168Google Scholar
113. Ralston, J.V. [ 1976 ] On the propagation of singularities in solutions of symmetric hyperbolic partial differ-ential equations. Commun. Partial Differ. Equations 1, No. 2, 87–133, Zb1. 336. 35066Google Scholar
114. Rauch, J. [ 1972 ] L2 is a continuable initial condition for Kreiss’ mixed problems. Commun. Pure Appl.Math. 25, 265–285, Zb1. 226. 35056Google Scholar
115. Rauch, J. [ 1977 ] The leading wave front for hyperbolic mixed problems. Bull. Soc. R. Sci., Liege 46,156–161, Zb1. 372. 35051Google Scholar
116. Rauch, J., Sjöstrand, J. [ 1981 ] Propagation of analytic singularities along diffracted rays. Indiana Univ. Math. J. 30,No. 3, 389–401, Zb1. 424. 35003Google Scholar
117. Sakamoto, R. [ 1970a ] Mixed problems for hyperbolic equations. I. J. Math. Kyoto Univ. 10, No. 2, 349–373,Zb1. 203, 100Google Scholar
118. Sakamoto, R. [ 1970b ] Mixed problems for hyperbolic equations. II. ibid, No. 3, 403–417, Zb1. 206, 401Google Scholar
119. Sakamoto, R. [ 1980 ] Hyperbolic Boundary Value Problems. Cambridge: Univ. Press, Zb1. 494. 35001Google Scholar
120. Sjöstrand, J. [ 1980a ] Analytic singularities and microhyperbolic boundary value problems. Math. Ann. 254,211–256, Zb1. 459. 35007Google Scholar
121. Sakamoto, R. [ 1980b ] Propagation of analytic singularities for second order Dirichlet problems. I. Commun.Partial Differ. Equations 5, No. 1, 41–94, Zb1. 458. 35026Google Scholar
122. Sakamoto, R. [ 1980c ] Propagation of analytic singularities for second order Dirichlet problems. II. ibid,No. 2, 187–207, Zb1. 534. 35030Google Scholar
123. Sakamoto, R. [ 1981 ] Propagation of analytic singularities for second order Dirichlet problems. III. ibid. 6,No. 5, 499–567, Zb1. 524. 35032Google Scholar
124. Soga, H. [ 1979 ] Mixed problems in a quarter space for the wave equation with a singular oblique derivative. Publ. Res. Inst. Math. Sci. 15, No. 3, 631–651, Zb1. 433. 35044Google Scholar
125. Soga, H. [ 1980 ] Mixed problems for the wave equation with a singular oblique derivative. Osaka J.Math. 17, No. 1, 199–232, Zb1. 429. 35045Google Scholar
126. Spagnolo, S. [ 1986 ] Analytic and Gevrey well-posedness of the Cauchy problem for second order weakly hyperbolic equations with coefficients irregular in time. In: Mizohata (Ed.): Hyperbolic Equations and Related Topics, Proc. Taniguchi Int. Symp., Katata and Kyoto Jap. 1984, 363–380, Zb1. 679. 35057Google Scholar
127. Strang, G. [ 1966 ] Necessary and insufficient conditions for well-posed Cauchy problems. J. Differ. Equa-tions 2, No. 1, 107–114, Zb1. 131, 91Google Scholar
128. Strang, G. [ 1967 ] On strong hyperbolicity. J. Math. Kyoto Univ. 6, No. 3, 397–417, Zb1. 174, 151Google Scholar
129. Svensson, S.L. [ 1970 ] Necessary and sufficient conditions for hyperbolicity of polynomials with hyperbolic principal part. Ark. Mat. 8, 145–162, Zb1. 203, 409Google Scholar
130. Taylor, M.E. [ 1976a ] Grazing rays and reflection of singularities of solutions to wave equations. I. Commun.Pure Appl. Math. 29, No. 1, 1–38, Zb1. 318. 35009Google Scholar
131. Taylor, M.E. [ 1976b ] Grazing rays and reflection of singularities of solutions to wave equations. II. ibid,No. 5, 463–482, Zb1. 327. 35038Google Scholar
132. Taylor, M.E. [ 1979 ] Grazing rays and reflection of singularities of solutions to wave equations. III. ibid 32,No. 1, 68–92Google Scholar
133. Taylor, M.E. [ 1981 ] Pseudodifferential Operators. Princeton: Univ. Press, Zb1. 453. 47026Google Scholar
134. Trèves, F. [ 1980 ] Introduction to Pseudodifferential and Fourier Integral Operators. Vols. 1 and 2. New York-London: Plenum Press, Zb1. 453. 47027Google Scholar
135. Uhlmann, G.A. [ 1982 ] Light intensity distribution in conical refraction. Commun. Pure Appl. Math. 35, 69–80,Zb1. 516. 35055Google Scholar
136. Wakabayashi, S. [ 1980 ] A necessary condition for the mixed problem to be C°-well posed. Commun. Partial Differ. Equations 5, No. 10, 1031–1064, Zb1. 445. 35084Google Scholar
137. Wakabayashi, S. [ 1983a ] Singularities of solutions of the hyperbolic Cauchy problem in Gevrey classes. Proc.Jap. Acad., Ser. A 59, No. 5, 182–185, Zb1. 527. 35048Google Scholar
138. Wakabayashi, S. [ 1983b ] Analytic singularities of solutions of the hyperbolic Cauchy problem. ibid, No. 10,449–452, Zb1. 552. 35052Google Scholar
139. Wakabayashi, S. [ 1984 ] Singularities of solutions of the Cauchy problem for symmetric hyperbolic systems.Commun. Partial Differ. Equations 9, No. 12, 1147–1177, Zb1.575. 35054 Yagdzhyan, K.A.Google Scholar
140. Wakabayashi, S. [ 1978 ] The Cauchy problem for weakly hyperbolic equations in Gevrey classes. Izv. Akad.Nauk Arm. SSR, Mat. 13, No. 1, 3–22, Zb1. 384. 35040Google Scholar
141. Wakabayashi, S. [ 1980 ] Well-posedness of the Cauchy problem for weakly hyperbolic equations. ibid 15, No. 6,475–487. English transi.: Soy. J. Contemp. Math. Anal., Arm. Acad. Sci. 15, No. 6, 54–65 (1980), Zb1. 477. 35056Google Scholar
142. Wakabayashi, S. [ 1985 ] Necessary and sufficient conditions for the well-posedness of the Cauchy problem for operators with multiple characteristics. ibid 20, No. 1, 3–25. English transi.: ibid. 20, No. 1, 1–23 (1985), Zb1. 593. 35013Google Scholar
143. Wakabayashi, S. [ 1986 ] Pseudodifferential operators with a parameter and the fundamental solution of theCauchy problem for operators with multiple characteristics. ibid 21, No. 4, 317–344. English transl.: ibid. 21, No. 4, 1–29 (1986), Zb1. 619. 35007Google Scholar
144. Yoshikawa, A. [ 1977 ] Construction of a parametrix for the Cauchy problem of some weakly hyperbolic equation. I. Hokkaido Math. J. 6, No. 2, 313–344. Zb1. 381. 35054Google Scholar
145. Yoshikawa, A. [ 1978a ] Construction of a parametrix for the Cauchy problem of some weakly hyperbolic equation. II. ibid 7, No. 1, 1–26, Zb1. 423. 35063Google Scholar
146. Yoshikawa, A. [ 1978b ] Construction of a parametrix for the Cauchy problem of some weakly hyperbolic equation. III. ibid, 127–141, Zb1. 393. 35040Google Scholar
147. Yoshikawa, A. [ 1980 ] Parametrices for a class of effectively hyperbolic operators. Commun. Partial Differ.Equations 5, No. 11, 1073–1151, Zb1. 483. 35048Google Scholar
148. Zajtseva, O.V. [ 1980 ] On the well-posedness of the Cauchy problem for a model equation with quadruple characteristics. Izv. Vyssh. Uchebn. Zaved., Mat. 1980, No. 6, 20–22. English trans].: Soy. Math. 24, No. 6, 21–23 (1980), Zb1. 441. 35041Google Scholar
149. Zajtseva, O.V. [ 1983 ] On the well-posedness of a model non-strictly hyperbolic mixed problem. ibid. 1983,No. 10, 22–25. English transi.: ibid. 27, No. 10, 28–32 (1983), Zb1. 599. 35094Google Scholar
150. Zajtseva, O.V. [ 1987a ] On the well-posedness of a new model non-strictly hyperbolic mixed problem. ibid. 1987, No. 11, 10–12. English transi.: ibid. 31, No. 11, 12–15 (1987), Zb1. 679. 35060Google Scholar
151. Zajtseva, O.V. [ 1987b ] The well-posedness conditions for the Cauchy problem for a certain model non-strictly hyperbolic equation. ibid. 1987, No. 12, 43–45. English transi.: ibid. 31, No. 12, 53–55 (1987), Zb1. 672. 35038Google Scholar