Advertisement

Der gesunde Respirationstrakt

  • S. A. Tschanz
  • P. H. Burri
  • J. C. Schittny
  • C. F. Poets
  • T. Nicolai
  • J. Hammer
  • M. Zach
  • J. Riedler
  • D. Böning
  • M. Hütler
  • M. Griese
  • W. Kummer
  • H. L. Hahn
  • R. Pabst
  • T. Tschernig
  • C. Rieger
  • H. Schroten
  • H. Renz
  • V. Im Hof
  • P. Gehr
  • J. H. Wildhaber

Zusammenfassung

Im Gegensatz zu den meisten anderen Organsystemen nimmt die Lunge ihre Funktion als Gasaustauschapparat erst mit der Geburt auf. Die Lufträume sind intrauterin mit Flüssigkeit gefüllt. Fast schlagartig wird während der Geburt diese Flüssigkeit durch Atemluft ersetzt, und die innere Lungenoberfläche tritt zum ersten Mal mit den Atemgasen in Kontakt. Ähnlich dramatisch erfolgt gleichzeitig die Umstellung der embryonalen auf die postnatalen Durchblutungsverhältnisse. Der Zeitplan und die Morphologie der Lungenentwicklung sind durch diese Umstände wesentlich geprägt.

Literatur

  1. Alcorn D, Adamson TM, Lambert TF, Maloney JE, Ritchie BRPM (1977) Morphological effects of chronic tracheal ligation and drainage in the fetal lamb lung. J Anat 123:649–660PubMedGoogle Scholar
  2. Burri PH (1974) The postnatal growth of the rat lung. III. Morphology. Anat Rec 180:77–98CrossRefGoogle Scholar
  3. Burri PH (1997) Structural aspects of prenatal and postnatal development and growth of the lung. In: McDonald J (ed) Lung growth and development. Dekker, New York, pp 1 – 35Google Scholar
  4. Burri PH (1999) Lung development and pulmonary angiogenesis. In: Gaultier C, Bourbon J, Post M (eds) Lung development. Oxford University Press, New York, pp. 122–151CrossRefGoogle Scholar
  5. Burri PH, Moschopulos M (1992) Structural analysis of fetal rat lung development. Anat Rec 234:399–418PubMedCrossRefGoogle Scholar
  6. Burri PH, Tarek MR (1990) A novel mechanism of capillary growth in the rat pulmonary microcirculation. Anat Rec 228:35–45PubMedCrossRefGoogle Scholar
  7. Caduff JH, Fischer LC, Burri PH (1986) Scanning electron microscopic study of the developing microvasculature in the postnatal rat lung. Anat Rec 216:154–164PubMedCrossRefGoogle Scholar
  8. DeMello DE, Reid LM (1995) Respiratory tract and lungs. In: Reed GB, Claireaux AE, Cockburn F (eds) Diseases of the fetus and newborn. Chapman & Hall, London, pp 523–560Google Scholar
  9. Hilfer SR (1996) Morphogenesis of the lung: control of embryonic and fetal branching. Ann Rev Physiol 58:93 – 113CrossRefGoogle Scholar
  10. Kitaoka H, Burri PH, Weibel ER (1996) Development of the human fetal airway tree: analysis of the numerical density of airway endtips. Anat Rec 244(2):207–213PubMedCrossRefGoogle Scholar
  11. Langman J (1989) Medizinische Embryologie. Thieme, StuttgartGoogle Scholar
  12. Moschopulos M, Burri PH (1993) Morphometry analysis of fetal rat lung development. Anat Rec 237:38–48PubMedCrossRefGoogle Scholar
  13. Tschanz SA, Damke BM, Burri PH (1995) Influence of postnatally administered glucocorticoids on rat lung growth. Biol Neonate 68:229–245PubMedCrossRefGoogle Scholar
  14. Tschanz SA, Makanya AN, Haenni B, Burri PH (2003) Effects of neonatal high-dose short-term glucocorticoid treatment on the lung: A morphologic and morphometric study in the rat. Pediatr Res 51(1):72–80CrossRefGoogle Scholar
  15. Wigglesworth JS (1988) Lung development in the second trimester. Br Med Bull 44:894–908PubMedGoogle Scholar
  16. Zeltner TB, Burri PH (1987) The postnatal development and growth of the human lung. II. Morphology. Respir Physiol 67:269–282CrossRefGoogle Scholar
  17. Zeltner TB, Caduff JH, Gehr P, Pfenninger J, Burri PH (1987) The postnatal development and growth of the human lung. I. Morphometry. Respir Physiol 67:247–267CrossRefGoogle Scholar
  18. Benninghoff A (2002/1994) Anatomie, 2 Bde. In: Zenker W, Drenckhahn D (Hrsg) Makroskopische Anatomie, Embryologie und Histologie des Menschen. Urban & Fischer, München Wien BaltimoreGoogle Scholar
  19. Crystal RG, West JB, Weibel ER, Barnes PJ (eds) (1997) The lung, scientific foundations, 2nd edn. Lippincott-Raven, Philadelphia New YorkGoogle Scholar
  20. Netter FH (2000) Atlas der Anatomie des Menschen, 2. Überarb. u.erw. Aufl.Thieme, Stuttgart (CD-ROM: Netter FH [1998] Interaktiver Atlas der Anatomie des Menschen, 1. Aufl.Thieme, Stuttgart)Google Scholar
  21. Otto WR (2002) Lung epithelial stem cells. J Pathol 197: 527–535PubMedCrossRefGoogle Scholar
  22. Sobotta J (1999/2000) Atlas der Anatomie des Menschen, 2 Bde. In: Putz R, Pabst R (Hrsg) 21. Aufl. Urban & Fischer, München Wien Baltimore (auch als CD-ROM)Google Scholar
  23. Khoo MCK, Kronauer RE, Strohl KP, Slutsky AS (1982) Factors inducing periodic breathing in humans: a general model. J Appl Physiol 53:544–659Google Scholar
  24. Richter DW (1997) Rhythmogenese der Atmung und Atmungsregulation. In: Schmidt RF, Thews G (Hrsg) Physiologie des Menschen. Springer, Berlin Heidelberg New York Tokio, S 592–603CrossRefGoogle Scholar
  25. Richter DW, Ballanyi K, Schwazacher S (1992) Mechanisms of respiratory rhythm generation. Curr Opin Neurobiol 2:788–793PubMedCrossRefGoogle Scholar
  26. Sant’Ambrogio G (1987) Nervous receptors of the tracheobronchial tree. Ann Rev Physiol 49:611 – 627CrossRefGoogle Scholar
  27. Schläfke ME, Schäfer T (1992) Schlafbezogene Störungen der Atmungsregulation bei Kindern. In: Berger M (Hrsg) Handbuch des normalen und gestörten Schlafs. Springer, Berlin Heidelberg New York Tokio, S 301–328CrossRefGoogle Scholar
  28. Benatar SR, Hewlett AM, Nunn JF (1973) The use of isoshunt lines for control of oxygen therapy. Br J Anaesth 45:711PubMedCrossRefGoogle Scholar
  29. Nasr SZ, Amato P, Wilmott RW (1991) Predicted values for lung diffusing capacity in healthy children. Pediatr Pulmonol 10:267–272PubMedCrossRefGoogle Scholar
  30. Numa AH, Newth CJ (1996) Anatomic dead space in infants and children. J Appl Physiol 80:1485 – 1489PubMedCrossRefGoogle Scholar
  31. O’Brodovich HM, Mellins RB, Mansell AL (1982) Effects of growth on the diffusion constant of carbon monoxide. Am Rev Respir Dis 125:670PubMedGoogle Scholar
  32. Scheid P, Piiper J (1989) Blood gas equilibration in lungs and pulmonary diffusion capacity. In: Chang HK, Paiva M (eds) Respiratory physiology, an analytical approach. Dekker, New York, pp 453–497Google Scholar
  33. Stam H, van den Beek A, Grunberg K et al. (1996) Pulmonary diffusing capacity at reduced alveolar volumes in children. Pediatr Pulmonol 21:84–89PubMedCrossRefGoogle Scholar
  34. Stark AR, Cohlan BA, Waggener TB, Frantz ID, Kosch PC (1987) Regulation of end-expiratory lung volume during sleep in premature children. J Appl Physiol 62:1117–1123PubMedCrossRefGoogle Scholar
  35. Thorsteinsson A, Jonmarker C, Larsson A, Vilstrup C, Werner O (1990) Functional residual capacity in anaesthetized children: normal values and values in children with cardiac abnormalities. Anaes-thesiology 73:876–881CrossRefGoogle Scholar
  36. Van Obbergh L, Carlier M, Clety SC de et al. (1993) Liver transplantation and pulmonary gas exchanges in hypoxemic children. Am Rev Respir Dis 148:1408–1410PubMedCrossRefGoogle Scholar
  37. Agostoni E (1959) Volume-pressure relationships of the thorax and lung in the newborn. J Appl Physiol 14:909PubMedGoogle Scholar
  38. Bryan AC, Wohl MB (1986) Respiratory mechanics in children. In: Mackelm PT, Mead J (eds) Mechanics of breathing, part I. American Physiology Society, Bethesda, pp 179–191Google Scholar
  39. Comroe JH, Forster RE, DuBois AB, Briscoe WA, Carlsen E (1962) The lung. Clinical physiology and pulmonary function tests. Year Book Medical, ChicagoGoogle Scholar
  40. Kerem E (1996) Why do infants and small children breathe faster? Pediatr Pulmonol 21:65–68PubMedCrossRefGoogle Scholar
  41. Lanteri CJ, Sly PD (1993) Changes in respiratory mechanics with age. J Appl Physiol 74:369–387PubMedGoogle Scholar
  42. Mansell A, Bryan AC, Levison H (1972) Airway closure in children. J Appl Physiol 33:711–714PubMedGoogle Scholar
  43. McFawn PK, Mitchell HW (1997) Effect of transmural pressure on preloads and collapse of immature bronchi. Eur Resp J 10:322–329CrossRefGoogle Scholar
  44. Murray JF (1976) The normal lung. Saunders, Philadelphia London TorontoGoogle Scholar
  45. Nunn JF (1993) Nunn’s applied respiratory physiology. Butterworth-Heinemann, OxfordGoogle Scholar
  46. Papastamelos C, Panitch HB, England SE, Allen JL (1995) Developmental changes in chest wall compliance in infancy and early childhood. J Appl Physiol 78:179 – 184PubMedGoogle Scholar
  47. Polgar G, Weng TR (1979) The functional development of the respiratory system. From the period of gestation to adulthood. Am Rev Respir Dis 120:625–695PubMedGoogle Scholar
  48. Leith DE, Mead J (1967) Mechanisms determining residual volume of the lungs in normal subjects. J Appl Physiol 23:221 – 227PubMedGoogle Scholar
  49. Macklem PT, Mead J (1967) The physiological basis of common pulmonary function tests. Arch Environ Health 14:5–10PubMedCrossRefGoogle Scholar
  50. Mead J, Turner JM, Macklem PT, Little JB (1967) Significance of the relationship between lung recoil and maximum expiratory flow. J Appl Physiol 22:95–108PubMedGoogle Scholar
  51. Pride NB, Permutt S, Rilly RL, Bromberger-Barnea B (1967) Determinants of maximal expiratory flow from the lungs. J Appl Physiol 23:646–662PubMedGoogle Scholar
  52. Zach MS, Oberwaldner B (1999) Chest physiotherapy. In:Taussig L, Landau L (eds) Paediatric respiratory medicine. Mosby Year Book, St. Louis, pp 299–311Google Scholar
  53. Nolte D (Hrsg) (1989) Asthma: das Krankheitsbild, der Asthmapatient, die Therapie, 4., neubearb u. erw Aufl. Urban & Schwarzenberg, München, S 1–3Google Scholar
  54. Phelan PD (ed) (1995) Asthma. In: Bailliere’s clinical paediatrics, international practice and research, vol 3/2. Bailliere Tindall, LondonGoogle Scholar
  55. Postma DS, Bleecker ER, Amelung PJ et al. (1995) Genetic susceptibility to asthma-bronchial hyperresponsiveness coinherited with a major gene for atopy. N Engl J Med 333:894–900PubMedCrossRefGoogle Scholar
  56. Riedel F, Oberdieck B, Streckert HJ, Philippou S, Krusat T, Marek W (1997) Persistence of airway hyperresponsiveness and viral antigen following respiratory syncytial virus bronchiolitis in young guinea-pigs. Eur Respir J 10:639–645PubMedGoogle Scholar
  57. Riedler J (1991) Beziehung zwischen Ausmaß der bronchialen Reaktivität und Medikamentennotwendigkeit (Therapie) beim Asthma bronchiale des Kindes. Pneumologie 45:49–51PubMedGoogle Scholar
  58. Sterk PJ, Fabbri LM, Quanjer PH et al. (1993) Airway responsiveness: standardized challenge testing with pharmacological, physical and sensitizing stimuli in adults. Eur Respir J 6 (Suppl 16): 53–83Google Scholar
  59. Williams PV, Shapiro G (1995) Inhalation bronchoprovocation in children. In: Spector SL (ed) Provocative testing in clinical practice. Dekker, New York, pp 249–278Google Scholar
  60. Wilson N, Silverman M (1995) Bronchial responsiveness and its measurement. In: Silverman M (ed) Childhood asthma and other wheezing disorders. Chapman & Hall, London, pp 142–174Google Scholar
  61. Astrand PO, Rodahl K (1986) Textbook of work physiology: Physiological bases of exercise. McGraw-Hill, New YorkGoogle Scholar
  62. Bar-Or O (1986) Die Praxis der Sportmedizin in der Kinderheilkunde: Physiologische Grundlagen und klinische Anwendung. Springer, Berlin Heidelberg New York TokyoCrossRefGoogle Scholar
  63. Godfrey S (1974) Exercise testing in children. Saunders, London Philadelphia TorontoGoogle Scholar
  64. Hollmann W, Hettinger Th (2000) Sportmedizin — Arbeits- und Trainingsgrundlagen. Schattauer, Stuttgart New YorkGoogle Scholar
  65. Klimt F (1992) Sportmedizin im Kindes- und Jugendalter. Thieme, Stuttgart New YorkGoogle Scholar
  66. Macek M, Vavra J (1980) The adjustment of oxygen uptake at the onset of exercise: A comparison between prepubertal boys and young adults. Int J Sports Med 1:70–72CrossRefGoogle Scholar
  67. McArdle WD, Katch FL, Katch VL (1996) Exercise physiology: Energy, nutrition, and human performance. Lea & Febiger, Philadelphia LondonGoogle Scholar
  68. Rowland T (ed) (1996) Developmental exercise physiology. Human Kinetics, Champaign/ILGoogle Scholar
  69. Skinner JS (ed) (1993) Exercise testing and exercise prescription. Lea & Febiger, Philadelphia LondonGoogle Scholar
  70. Griese M (1992) Surfactanthomöostase — Grundlagen für die Surfactantsubstitutionstherapie. Monatsschr Kinderheilkd 140 : F2 – F12Google Scholar
  71. Griese M (1999) Pulmonary surfactant in health and lung disease: state of the art. Eur Respir J13:1455 – 1476CrossRefGoogle Scholar
  72. Griese M, Dietrich P, Reinhardt D (1995) Pharmacokinetics of bovine surfactant in neonatal respiratory distress syndrome. Am J Resp Crit Care Med 152:1050–1054PubMedCrossRefGoogle Scholar
  73. Griese M, Dietrich P, Potz C, Westerburg B, Bals R, Reinhardt D (1996) Surfactant subfractions during nosocomial infection in ventilated preterm human neonates. Am J Resp Crit Care Med 153:398–403PubMedCrossRefGoogle Scholar
  74. Griese M, Birrer P, Demirsoy A (1997a) Pulmonary surfactant in cystic fibrosis. Eur Respir J 10:1983 – 1988PubMedCrossRefGoogle Scholar
  75. Griese M, Bufler P, Teller J, Reinhardt D (1997b) Nebulization of a bovine surfactant in cystic fibrosis: a pilot study. Eur Respir J 10: 1989–1994PubMedCrossRefGoogle Scholar
  76. Griese M, Wilnhammer C, Jansen S, Rinker C (1999) Cardiopulmonary bypass reduces pulmonary surfactant activity in infants. J Thorac Cardiovas Surg 188:237–244Google Scholar
  77. Hills BA, Masters IB, Vance JC, Hills YC (1997) Abnormalities in surfactant in sudden infant death syndrome as a postmortem marker and possible test of risk. J Paediatr Child Health 33:61 – 66PubMedCrossRefGoogle Scholar
  78. Hohlfeld J, Fabel H, Hamm H (1997) The role of pulmonary surfactant in obstructive airways disease. Eur Respir J 10:482–491PubMedCrossRefGoogle Scholar
  79. LeVine AM, Bruno MD, Huelsman KM, Ross GF, Whitsett JA, Korfhagen TR (1997) Surfactant potein A-deficient mice are susceptible to group B streptococcal infection. J Immunol 158:4336–4340PubMedGoogle Scholar
  80. Robertson B, VanGolde LMG, Batenburg JJ (1992) Pulmonary surfactant. From molecular biology to clinical practice. Elsevier, AmsterdamGoogle Scholar
  81. Soll RF (1997) Surfactant therapy in the USA: trials and current routines. Biol Neonate 71 (suppl 1): 1 – 7PubMedGoogle Scholar
  82. Archer S, Michelakis E (2002) The mechanism(s) of hypoxic pulmonary vasoconstriction: potassium channels, redox 0(2) sensor, and controversies. News Physiol Sci 17:131 – 137PubMedGoogle Scholar
  83. Barnes PJ, Liu SF (1995) Regulation of pulmonary vascular tone. Pharmacol Rev 47:87 – 131PubMedGoogle Scholar
  84. Leach RM, Hill HM, Snetkov VA, Robertson TP, Ward JP (2001) Divergent roles of glycolysis and the mitochondrial electron transport chain in hypoxic pulmonary vasoconstriction of the rat: identity of the hypoxic sensor. J Physiol 536:211 – 224PubMedCrossRefGoogle Scholar
  85. Adriaensen D, Timmermans JP, Scheuermann DW (1997) Neuroepithelial bodies in vertebrate lungs. In: Korf HW, Usadel KH (eds) Neuroendocrinology: Retrospect and perspectives. Springer, Berlin Heidelberg New York Tokyo, pp 227–240Google Scholar
  86. Davidson A, Moody TW, Gozes I (1996) Regulation of VIP gene expression in general. Human lung cancer cells in particular. J Mol Neurosa 7:99–110CrossRefGoogle Scholar
  87. Fischer A, Hoffmann B (1996) Nitric oxide synthase in neurons and nerve fibers of lower airway and in vagal sensory ganglia of man. Am J Respir Crit Care Med 154:209–216PubMedCrossRefGoogle Scholar
  88. Fischer A, Canning BJ, Kummer W (1996) Correlation of vasoactive intestinal peptide and nitric oxide synthase with choline acetyltrans-ferase in the airway innervation. Ann NY Acad Sci 805:717–722PubMedCrossRefGoogle Scholar
  89. Hahn HL, Wilson AG, Graf PD et al. (1978) Interaction between serotonin and efferent vagus nerves in dog lungs. J Appl Physiol 44:144–149PubMedGoogle Scholar
  90. Hauser-Kronberger C, Hacker GW, Albegger K et al. (1996) Distribution of two VIP-related peptides, helospectin and pituitary adenylate cyclase activating peptide (PACAP), in the human upper respiratory system. Regul Pept 65:203–209PubMedCrossRefGoogle Scholar
  91. Ichinose M, Miura M, Yamauchi H et al. (1996) A neurokinin 1 -receptor antagonist improves exercise-induced airway narrowing in asthmatic patients. Am J Respir Crit Care Med 153:936–941PubMedCrossRefGoogle Scholar
  92. Kohno M, Hanehira T, Hirata K et al. (1996) An accelerated increase of plasma adrenomedullin in acute asthma. Metabolism 45:1323–1325PubMedCrossRefGoogle Scholar
  93. Luccini RE, Facchini F, Turato G et al. (1997) Increased VIP-positive nerve fibers in the mucous glands of subjects with chronic bronchitis. Am J Respir Crit Care Med 156:1963–1968CrossRefGoogle Scholar
  94. Meloni F, Bertoletti R, Corsico D et al. (1992) Bombesin/gastrin releasing peptide levels of peripheral mononuclear cells, monocytes and alveolar macrophages in chronic bronchitis. Int J Tissue React 14:195–201PubMedGoogle Scholar
  95. Poyner D (1995) Pharmacology of receptors for calcitonin gene-related peptide and amylin. Trends Pharmacol Sci 16:424–428PubMedCrossRefGoogle Scholar
  96. Bienenstock J, Clancy R, McDermot MR (1999) Respiratory tract defences: role of mucosal lymphoid tissue. In: Orgra PL, Mesteck J et al. (eds) Handbook of mucosal immunology, 2nd Academic Press, San Diego, pp 283–292Google Scholar
  97. Bienenstock J, Clancy R (1994) Bronchial mucosal lymphoid tissue. In: Ogra PL, Mestecky J et al. (eds) Handbook of mucosal immunology. Academic Press, San Diego, pp 529–538Google Scholar
  98. Dunkley M, Pabst R, Cripps A (1995) An important role for intestinally derived T cells in respiratory defence. Immunol Today 16: 231–236PubMedCrossRefGoogle Scholar
  99. Hiller AS, Kracke A, Tschernig T, Kasper M, Kleemann WJ, Tröger HD, Pabst R (1997) Comparison of the immunohistology of mucosa-associated lymphoid tissue in the larynx and lungs in cases of sudden infant death and controls. Int J Legal Med 110:316–322PubMedCrossRefGoogle Scholar
  100. Hiller AS, Tschernig T, Kleemann WJ, Pabst R (1998) Bronchus-associated lymphoid tissue (BALT) and larynx-associated lymphoid tissue (LALT) are found at different frequencies in children, adolescents and adults. Scand J Immunol 47:159–162PubMedCrossRefGoogle Scholar
  101. Holt PG, Stumbles PA (2001) Regulation of immunologic homeostasis in peripheral tissue by dendritic cells: the respiratory tract as a paradigm. J Allergy Clin Immunol 104:421–429Google Scholar
  102. Jahnsen FL, Moloney ED, Hogan T, Upham JW, Burke CM, Holt PG (2001) Rapid dendritic cell recruitment to the bronchial mucosa of patients with atopic asthma in response to local allergen challenge. Thorax 56:823–826PubMedCrossRefGoogle Scholar
  103. Jecker P, Ptok M, Pabst R, Westermann J (1996) Age dependency of the composition of immunocompetent cells and the expression of adhesion molecules in rat laryngeal mucosa. Laryngoscope 106: 733–738PubMedCrossRefGoogle Scholar
  104. Lambrecht BN, Prins JB, Hoogsteden HC (2001) Lung dendritic cells and host immunity to infection. Eur Respir J 18:692–704PubMedGoogle Scholar
  105. Pabst R (1992) Is BALT a major component of the human lung immune system? Immunol Today 13:119–122PubMedCrossRefGoogle Scholar
  106. Pabst R, Tschernig T (1995) Lymphocytes in the lung: an often neglected cell. Numbers, characterization and compartmentalization. Anat Embryol 192:293–299PubMedCrossRefGoogle Scholar
  107. Tschernig T, Debertin AS, Paulsen T, Kleemann WJ, Pabst R (2001) Dendritic cells in the mucosa of the human trachea are not regularly found in the first year of life. Thorax 56:427–431PubMedCrossRefGoogle Scholar
  108. Tschernig T, Kleemann WJ, Pabst R (1995) Bronchus-associated lymphoid tissue (BALT) in the lungs of children who had died from sudden infant death syndrome and other causes. Thorax 50: 658–660PubMedCrossRefGoogle Scholar
  109. Tschernig T, Papst R (2000) Bronchus-associated lymphoid tissue (BALT) is not present in the normal adult lung but in different diseases. Pathobiology 68:1–89PubMedCrossRefGoogle Scholar
  110. Brain JD (1992) Mechanisms, measurement, and significance of lung macrophage function. Environ Health Perspect 97:5 – 10PubMedCrossRefGoogle Scholar
  111. Brandtzaeg P (1992) Humoral immune respsonse patterns of human mucosae: Induction and relation to bacterial respiratory tract infections. J Infect Dis 165 (Suppl): 167–176CrossRefGoogle Scholar
  112. Brandtzaeg P (1995 a) The role of humoral mucosal immunity in the induction and maintenance of chronic airway infections. Am J Respir Crit Care Med 151:2081 – 2087PubMedCrossRefGoogle Scholar
  113. Brandtzaeg P (1995 b) Molecular and cellular aspects of the secretory immunoglobulin system. APMIS 103:1–9PubMedCrossRefGoogle Scholar
  114. Buret A, Cripps AW (1993) The immunoevasive activities of Pseudomonas aeruginosa. Am Rev Respir Dis 148:793–805PubMedCrossRefGoogle Scholar
  115. Dunkley M, Pabst R, Cripps A (1995) An important role for intestinally derived T cells in respiratory defence. Immunol Today 16/5: 231–236PubMedCrossRefGoogle Scholar
  116. Epstein J, Eichbaum Q, Sheriff S, Ezekowitz RAB (1996) The collections in innate immunity. Curr Opin Immunol 8:29–35PubMedCrossRefGoogle Scholar
  117. Gelfand EW (1993) Unique susceptibility of patients with antibody deficiency to mycoplasma infection. Clin Infect Dis 17 (Suppl 1): 250–253Google Scholar
  118. Lamblin G, Roussel P (1993) Airway mucins and their role in defence against micro-organisms. Respir Med 87:421 – 426PubMedCrossRefGoogle Scholar
  119. McCormack FX, Whitsett JA (2002) The pulmonary collections, SP-A and SP-D, orchestrate innate immunity in the lung. J Clin Invest 109:707–712PubMedGoogle Scholar
  120. Moss RB (1993) Pulmonary Defenses. In: Hilman BC (ed) Pediatric respiratory diseases. Saunders, Philadelphia, pp 12–36Google Scholar
  121. Musher DM, Groover JE, Rowland JM et al. (1993) Antibody to capsular polysaccharides of streptococcus pneumoniae: Prevalence, persistence and response to revaccination. Clin Infect Dis 17: 66–73PubMedCrossRefGoogle Scholar
  122. Takizawa H (1997) Airway epithelial cells as regulators of airways inflammation (Review). Int J Mol Med 1:367–378Google Scholar
  123. Toews GB (1993) Pulmonary defense mechanisms. Semin Respir Infect 8/3:160–167PubMedGoogle Scholar
  124. Wang X, Moser C, Louboutin JP, Lysenko ES, Weiner DJ, Weiser JN, Wilson JM (2002) Toll-Like Receptor 4 mediates innate immune responses to Haemophilus influenzae infection in mouse lung. J Immunol 168:810–815PubMedGoogle Scholar
  125. Zhang P, Summer WR, Bagby GJ (2000) Innate immunity and pulmonary host defense. Immunol Rev 173:39–51PubMedCrossRefGoogle Scholar
  126. Brain JD (1992) Mechanisms, measurement, and significance of lung macrophage function. Environ Health Perspect 97:5–10PubMedCrossRefGoogle Scholar
  127. Epstein J, Eichbaum Q, Sheriff S, Ezekowitz RAB (1996) The collectins in innate immunity. Curr Opin Immunol 8:29–35PubMedCrossRefGoogle Scholar
  128. Lamblin G, Roussel P (1993) Airway mucins and their role in defence against micro-organisms. Respir Med 87:421 – 426PubMedCrossRefGoogle Scholar
  129. McCormack FX, Whitsett JA (2002) The pulmonary collections, SP-A and SP-D, orchestra innate immunity in the lung. J Clin Invest 109:707–712PubMedGoogle Scholar
  130. Moss RB (1993) Pulmonary defenses. In: Hilman BC (ed) Pediatric respiratory diseases. Saunders, Philadelphia, pp 12–36Google Scholar
  131. Takizawa H (1997) Airway epithelial cells as regulators of airway inflammation (Review). Int J Mol Med 1:367–378Google Scholar
  132. Wang X, Moser C, Louboutin JP, Lysenko ES, Weiner DJ, Weiser JN, Wilson JM (2002) Toll-Like Receptor 4 mediates innate immune responses to Haemophilus influenzae infection in mouse lung. J Immunol 168:810–815PubMedGoogle Scholar
  133. Zhang P, Summer WR, Bagby GJ (2000) Innate immunity and pulmonary host defense. Immunol Rev 173:39–51PubMedCrossRefGoogle Scholar
  134. Bluestone JA (1995) New perspectives of CD28-B7-mediated T cell co-stimulation. Immunity 2:555–559PubMedCrossRefGoogle Scholar
  135. Daser A, Meissner N, Herz U, Renz H (1995) Role and modulation of T-cell cytokines in allergy. Curr Opin Immunol 7:762–770PubMedCrossRefGoogle Scholar
  136. Duncan DD, Swain SL (1994) Role of antigen-presenting cells in the polarized development of helper T cell subsets: Evidence for differential cytokine production by Tho cells in response to antigen presentation by B cells and macrophages. Eur J Immunol 24: 2506–2514PubMedCrossRefGoogle Scholar
  137. Hamid Q, Bogunierwicz, Leung DYM (1994) Differential in situ cytokine gene expression in acute versus chronic atopic dermatitis. J Clin Invest 94:870–876PubMedCrossRefGoogle Scholar
  138. McMenamin C, Pimm C, McKersey M, Holt PG (1994) Regulation of IgE responses in mice by antigen-specific gd T cells. Science 265: 1869–1871PubMedCrossRefGoogle Scholar
  139. Paul WE, Seder RA (1994) Lymphocyte, responses and cytokines. Cell 76:241–251PubMedCrossRefGoogle Scholar
  140. Pfeiffer C, Stein J, Southwood S, Ketelaar H, Sette A, Bottomly K (1995) Altered peptide ligands can control CD4T lymphocyce differentiation in vivo. J Exp Med 181:1569–1574PubMedCrossRefGoogle Scholar
  141. Santamaría LF, Bheekha R, Van Reijsen FC, Perez-Soler MT, Suter M, Bruijnzeel-Koomen CA, Mudde GC (1993) Antigen focusing by specific monomeric immunoglobulin E bound to CD23 on Ep-stein-Barr virus-transformed B cells. Hum Immunol 37:23–30PubMedCrossRefGoogle Scholar
  142. Schmitz J, Assenmacher M, Radbruch A (1993) Regulation of T helper cytokine expression: Functional dichotomy of antigen presenting cells. Eur J Immunol 23:191 – 199PubMedCrossRefGoogle Scholar
  143. Schroeder JT, MacGlashan DW, Kagey-Sobotka A, White JM, Lichtenstein LM (1994) IgE-dependent IL-4 secretion by human basophils. IgE-dependent IL-4 secretion by human basophils. J Immunol 153:1808–1817PubMedGoogle Scholar
  144. Tang MLK, Kemp AS,Thorbun J, Hill DJ (1994) Reduced interferongamma secretion in neonates and subsequent atopy. Lancet 344 : 983–985PubMedCrossRefGoogle Scholar
  145. Walker C, Bode E, Boer L, Hansel TT, Blaser K, Virchow JC jr (1992) Allergic and nonallergic asthmatics have distinct patterns of T cell activation and cytokine production in peripheral blood and bron-choalveolar lavage. Am Rev Respir Dis 146:109–115PubMedCrossRefGoogle Scholar
  146. Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (1995) Molekularbiologie der Zelle. VCH, WeinheimGoogle Scholar
  147. Boucher RC (1994) Human airway ion transport. Part one. Am J Respir Crit Care Med 150:271–281PubMedCrossRefGoogle Scholar
  148. Gehr P, Im Hof V, Geiser M, Schürch S (1991) The fate of particles deposited in the intrapulmonary conducting airways. J Aerosol Med 4:349–361CrossRefGoogle Scholar
  149. Gehr P, Green FHY, Geiser M, Im Hof V, Lee MM, Schürch S (1996) Airway Surfactant, a primary defense barrier: Mechanical and immunological aspects. J Aerosol Med 9:163–181PubMedCrossRefGoogle Scholar
  150. Geiser M, Im Hof V, Gehr P, Cruz-Orive LM (1990) Histological and stere-ological analysis of particle retention in the conducting airways of hamster lungs. J Aerosol Med 3:131–145CrossRefGoogle Scholar
  151. Geiser M, Im Hof V, Schürch S, Gehr P (2000) Structural and interfacial aspects particle retention. In: Lenfant C (ed) Lung biology in health and disease. Dekker, New York, pp 291–322Google Scholar
  152. Holt PG, Schon-Hegrad MA, Oliver J, Holt BJ, McMenamin PG (1990) A contiguous network of dendritic antigen-presenting cells within the respiratory epithelium. Int Arch Allergy Appl Immunol 91 : 155–159PubMedCrossRefGoogle Scholar
  153. Im Hof V, Gehr P, Gerber V, Lee MM, Schürch S (1997) In vivo determination of tracheal surface tension in the horse and in vitro control studies. Respir Physiol 109:81–93PubMedCrossRefGoogle Scholar
  154. Lee MM, Schürch S, Roth S, Karkhanis A, Schürrch S (1995) Effects of acid aerosol exposure on the surface properties of airway mucus. Exp Lung Res 231:835–851CrossRefGoogle Scholar
  155. McWilliam AS, Holt P, Gehr P (2000) Dendritic cells as sentinels of immune surveillance in the airways. In: Gehr P, Heyder J (eds) Particle-lung interaction, vol. 143. Dekker, New York, pp 473–490 (Lung biology in health and disease, exec ed C Lenfant)Google Scholar
  156. Pison U, Max M, Neuendank A, Weissbach S, Petschmann S (1994) Host defense capacities of pulmonary surfactant: Evidence for »non-surfactant« functions of the surfactant system. Eur J Clin Invest 24:586–599PubMedCrossRefGoogle Scholar
  157. Scheuch G, Stahlhofen W, Heyder J (1996) An approach to deposition and clearance measurements in human airways. J Aerosol Med 9:35–41PubMedCrossRefGoogle Scholar
  158. Schürch S, Gehr P, Im Hof V, Geiser M, Green FHY (1990) Surfactant displaces particles toward the epithelium in airways and alveoli. Respir Physiol 80:17–32PubMedCrossRefGoogle Scholar
  159. Hasani A, Pavia D, Agnew JE, Clarke SW (1994) Regional mucus transport following unproductive cough and forced exspiration technique in patients with airways obstruction. Chest 105:1420–1425PubMedCrossRefGoogle Scholar
  160. King M, Brock G, Lundell C (1985) Clearance of mucus by simulated cough. J Appl Physiol 58 (6): 1776–1782PubMedGoogle Scholar
  161. Leith RE (1977) Cough. In: Brain JD, Proctor DI, Reid LM (eds) Respiratory defense mechanisms. Dekker, New York, pp 545–592Google Scholar
  162. Macklem PT (1974) Physiology of cough. Ann Otol 83X:761–768Google Scholar
  163. Oldenburg FA jr., Dolovich MB, Montgomery JM, Newhouse MT (1979) Effects of postdural drainage, exercise, and cough on mucus clearance in chronic bronchitis. Am Rev Respir Dis 120:739–745PubMedGoogle Scholar
  164. Robinson M, Regnis JA, Bailey DA, King M, Bautovich GJ, Beye PT (1996) Effect of hypertonic saline, amiloride and cough on mucociliary clearance in patients with cystic fibrosis. Am J Respir Crit Care Med 153:1503–1509PubMedCrossRefGoogle Scholar
  165. Salathe M, O’Riordan TG, Wanner A (1996) Treatment of mucociliary dysfunction. Chest 110:1048–1057PubMedCrossRefGoogle Scholar
  166. Wanner A, Phipps RJ, Kim CS (1991) Mucus clearance: Cilia and cough. In: Chernick V, Mellins RB (eds) Basic mechanisms of pediatric respiratory disease: Cellular and integrative. Dekker, Philadelphia, pp 361–382Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • S. A. Tschanz
  • P. H. Burri
  • J. C. Schittny
  • C. F. Poets
  • T. Nicolai
  • J. Hammer
  • M. Zach
  • J. Riedler
  • D. Böning
  • M. Hütler
  • M. Griese
  • W. Kummer
  • H. L. Hahn
  • R. Pabst
  • T. Tschernig
  • C. Rieger
  • H. Schroten
  • H. Renz
  • V. Im Hof
  • P. Gehr
  • J. H. Wildhaber

There are no affiliations available

Personalised recommendations