Pädiatrie pp 341-368 | Cite as

Störungen des Stoffwechsels von Aminosäuren und organischen Säuren

  • E. Harms
  • U. Wendel

Zusammenfassung

Der Mensch nimmt mit einer normalen eiweißhaltigen Ernährung wesentlich größere Mengen der essentiellen Aminosäure Phenylalanin zu sich, als er für seine Eiweißsynthese benötigt. Überschüssiges Phenylalanin wird daher unter normalen Bedingungen ganz überwiegend durch die Phenylalaninhydroxylase (PAH) zu Tyrosin umgewandelt. Dieses Enzym benötigt als aktiven Cofaktor Tetrahydrobiopterin (BH4). Sowohl ein Aktivitätsverlust oder Fehlen des Apoenzyms PAH als auch ein Mangel des Cofaktors BH4 vermindern die Aktivität des Enzymsystems. Dabei kommt es bei normaler Eiweißzufuhr zu erhöhten Phenylalaninspiegeln in Blut und Organen. Tyrosin wird durch den Defekt zu einer essentiellen Aminosäure. Erhöhte Phenylalaninkonzentrationen führen im Säuglings- und Kleinkindesalter während der Phase der Entwicklung zu irreversiblen Schädigungen des Gehirns, nach Abschluß der Hirnentwicklung zu reversiblen Funktionseinschränkungen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Azen C, Koch R, Friedman E, Wenz E, Fishier K (1996) Summary of findings from the United States Collaborative Study of children treated for phenylketonuria. Eur J Pediatr 155/Suppl 1: S29–S32PubMedGoogle Scholar
  2. Burgard P, Rupp A, Konecki DS, Trefz FK, Schmidt H, Lichter Konecki U (1996a) Phenylalanine hydroxylase genotypes, predicted residual enzyme activity and phenotypic parameters of diagnosis and treatment of phenylketonuria. Eur J Pediatr 155/Suppl 1: S11–S15PubMedGoogle Scholar
  3. Burgard P, Schmidt E, Rupp A, Schneider W, Bremer HJ (1996b) Intellectual development of the patients of the German Collaborative Study of children treated for phenylketonuria. Eur J Pediatr 155/Suppl 1: S33–S38PubMedCrossRefGoogle Scholar
  4. Burgard P, Rey F, Rupp A, Abadie V, Rey J (1997) Neuropsychologic functions of early treated patients with phenylketonuria, on and off diet: results of a cross-national and cross-sectional study. Pediatr Res 41: 368–374PubMedCrossRefGoogle Scholar
  5. Güttler F, Guldberg P (1996) The influence of mutations on enzyme activity and phenylalanine tolerance in phenylalanine hydroxylase deficiency. Eur J Pediatr 155/Suppl 1: S6–S10PubMedCrossRefGoogle Scholar
  6. Koch R, Fishier K, Azen C, Guldberg P, Güttler F (1997) The relationship of genotype to phenotype in phenylalanine hydroxylase deficiency. Biochem Mol Med 60:92–101PubMedCrossRefGoogle Scholar
  7. Möller HE, Weglage J, Wiedermann D, Vermathen P, Bick U, Ullrich K (1997) Kinetics of phenylalanine transport at the human blood-brain barrier investigated in vivo. Brain Res 778: 329–337PubMedCrossRefGoogle Scholar
  8. Przyrembel H (1996) Recommendations for protein and amino acid intake in phenylketonuria patients. Eur J Pediatr 1996 155/Suppl 1:S130–S131CrossRefGoogle Scholar
  9. Schmidt E, Burgard P, Rupp A (1996) Effects of concurrent phenylalanine levels on sustained attention and calculation speed in patients treated early for phenylketonuria. Eur J Pediatr 155/Suppl 1: S82–S86PubMedCrossRefGoogle Scholar
  10. Weglage J, Ullrich K, Pietsch M, Fünders B, Güttler FHarms E, (1997) Intellectual, neurologic, and neuropsychologic outcome in untreated subjects with nonphenylketonuric hyperphenylalaninemia. German Collaborative Study on Phenylketonuria. Pediatr Res 42: 378–384PubMedCrossRefGoogle Scholar
  11. Hanley WB, Koch R, Levy HL, Matalon R, Rouse B, Azen CCruz F de la , (1996) The North American Maternal Phenylketonuria Collaborative Study, developmental assessment of the offspring: preliminary report. Eur J Pediatr 155/Suppl 1: S169–S172PubMedCrossRefGoogle Scholar
  12. Lenke RR, Levy HL (1980) Maternal phenylketonuria and hyperpheny-lalaninemia. An international survey of the outcome of untreated and treated pregnancies. N Engl J Med 303: 1202–1208PubMedCrossRefGoogle Scholar
  13. Levy HL, Waisbren SE, Lobbregt D et al. (1996) Maternal non-phenyl-ketonuric mild hyperphenylalaninemia. Eur J Pediatr 155/Suppl 1: S20–S25Google Scholar
  14. Blau N, Barnes I, Dhondt JL (1996) International database of tetrahydrobiopterin deficiencies. J Inher Metab Dis 19: 8–14PubMedCrossRefGoogle Scholar
  15. Matalon R, Michals K, Blau N, Rouse B (1989) Hyperphenylalaninemia due to inherited deficiencies of tetrahydrobiopterin. Adv Pediatr 36: 67–89PubMedGoogle Scholar
  16. Holme E, Lindstedt S (1995) Diagnosis and management of tyrosinemia type I. Curr Opin Pediatr 7: 726–732PubMedGoogle Scholar
  17. Lindstedt S, Holme E, Lock EA, Hjalmarson O, Strandvik B (1992) Treatment of hereditary tyrosinaemia type I by inhibition of 4-hydroxyphenylpyruvate dioxygenase. Lancet 340/8823: 813–817PubMedCrossRefGoogle Scholar
  18. Goldsmith LA, Kang E, Bienfang DC, Jimbow K, Gerald P, Baden HP (1973) Tyrosinemia with plantar and palmar keratosis and keratitis. J Pediatr 83: 798–805PubMedCrossRefGoogle Scholar
  19. Hervé F, Moreno JL, Ogier H .et al (1986) Kératite „inguérissable“ et hyperkératose palmo-plantaire chronique avec hypertyrosinémie. Guerison par un regime pauvre en tyrosine. Tyrosinémie de type II. Arch Fr Pediatr 43: 19–22PubMedGoogle Scholar
  20. O’Brien WM, La Du BN, Bunim JJ (1963) Biochemical, pathological and clinical aspects of alcaptonuria, ochronosis and ochronotic arthropathy. Am J Med 34: 813–838CrossRefGoogle Scholar
  21. Hazleman BL, Adebajo AORoyce PM, Steinmann B (1993) Alcaptonuria. In: (eds) Connective Tissue and 1st Heritable Disorders. Wiley-Liss, New York, pp 591–602Google Scholar
  22. Chuang DT, Shih VEScriver CR, Beaudet AL, Sly WS, Valle D (1995) Disorders of branched-chain amino acid and keto acid metabolism. In: (eds) The metabolic and molecular bases of inherited disease, 7th ed. McGraw-Hill, New York, pp 1239–1277Google Scholar
  23. Korein J, Sansaricq C, Kalmijn M, Honig JLange B, (1994) Maple syrup urine disease: clinical, EEG, and plasma amino acid correlations with a theoretical mechanism of acute neurotoxicity. Intern J Neuroscience 79:21–45Google Scholar
  24. Rashed MS, Ozand PT, Bucknall MP, Little D (1995) Diagnosis of inborn errors of metabolism from blood spots by acylcarnitines and amino acids profiling using automated electrospray tandem mass spectrometry. Pediatr Res 28: 324–331CrossRefGoogle Scholar
  25. Berry GT, Yudkoff M, Segal S (1988) Isovaleric acidemia: medical and neurodevelopmental effects of long-term therapy. J Pediatr 113: 58–64PubMedCrossRefGoogle Scholar
  26. Fries MH, Rinaldo P, Schmidt-Sommerfeld E, Jurecki EPackman S, (1996) Isovaleric acidemia: response to a leucine load after three weeks of supplementation with glycine, L-carnitine, and combined glycine-carnitine therapy. J Pediatr 129: 449–452PubMedCrossRefGoogle Scholar
  27. Gibson KM, Elpeleg ON, Jakobs C, Costeff H, Kelley RI (1993) Multiple syndromes of 3-methylglutaconic aciduria. Pediatr Neurol 9: 120–123PubMedCrossRefGoogle Scholar
  28. Nyhan WLOzand T, (1998) 3-Hydroxy-3methylglutaryl CoA lyase deficiency. In: Atlas of Metabolic diseases. Chapman & Hall Medical, London, pp 253–258Google Scholar
  29. Bergman AJIW, van der Knaap MS, Smeitink JAM, Duran M et al. (1996) Magnetic resonance imaging and spectroscopy of the brain in propionic acidemia: clinical and biochemical considerations. Pediatr Res 40:404–409PubMedCrossRefGoogle Scholar
  30. Lehnert W, Sperl W, Suormala T, Baumgartner ER (1994) Propionic acidemia: clinical, biochemical and therapeutic aspects. Eur J Pediatr 153/Suppl 1: S68–S80PubMedCrossRefGoogle Scholar
  31. Massoud AF, Leonard JV (1993) Cardiomyopathy in propionic acidemia. Eur J Pediatr 152: 441–445PubMedCrossRefGoogle Scholar
  32. North KN, Korson MS, Gopal YR, Rohr FJ et al. (1995) Neonatal-onset propionic acidemia: neurologic and developmental profiles, and implications for management. J Pediatr 126: 916–922PubMedCrossRefGoogle Scholar
  33. Surtees RAH, Matthews EE, Leonard JV (1992) Neurolgical outcome of propionic acidemia. Pediatr Neurol 8: 333–337PubMedCrossRefGoogle Scholar
  34. Baumgartner ER, Viardot C et al. (1995) Long-term follow-up of 77 patients with isolated methylmalonic acidemia. J Inher Metab Dis 18:138–142CrossRefGoogle Scholar
  35. D’Angio CT, Dillon MJ, Leonard JV (1991) Renal tubular dysfunction in methylmalonic acidemia. Eur J Pediatr 150: 259–263PubMedCrossRefGoogle Scholar
  36. Leonard JV (1995) The management and outcome of propionic and methylmalonic acidemia. J Inher Metab Dis 18: 430–434PubMedCrossRefGoogle Scholar
  37. Rosenblatt DS, Shevell MIFernades J, Saudubray JM, Berghe G van den (1995) Inherited disorders of cobalamin and folate absorption and metabolism. In: (eds) Inborn metabolic diseases, 2nd ed. Springer, Berlin Heidelberg New York, pp 247–258CrossRefGoogle Scholar
  38. Ogier de Baulny H, Gerard M, Saudubray JM, Zittoun J (1998) Remethylation defects: guidelines for clinical diagnosis and treatment. Eur J Pediatr 157/Suppl 2: S77–S83CrossRefGoogle Scholar
  39. Baumgartner R, Suormala TFernandes J, Saudubray JM, Berghe G van den (1995) Biotin-responsive multiple carboxylase deficiency. In: (eds) Inborn metabolic diseases, 2nd ed. Springer, Berlin Heidelberg New York, pp 239–245CrossRefGoogle Scholar
  40. Hoffmann GF, Athanassopoulos S, Burlina AB, Duran M et al. (1996) Clinical course, early diagnosis, treatment, and prevention of disease in glutaryl-CoA dehydrogenase deficiency. Neuropediatrics 27:115–123PubMedCrossRefGoogle Scholar
  41. Hoffmann GF (1994) Die Mevalonazidurie. Thieme, StuttgartGoogle Scholar
  42. Hamosh A, McDonald JW, Valle D, Francomano CA, Niedermeyer E, Johnston MV (1992) Dextromethorphan and high-dose benzoate therapy for nonketotic hyperglycinemia in an infant. J Pediatr 121: 131–135PubMedCrossRefGoogle Scholar
  43. Ohya Y, Ochi N, Mizutani N, Hayakawa C, Watanabe K (1991) Nonketotic hyperglycinemia: treatment with NMDA antagonist and consideration of neuropathogenesis. Pediatr Neurol 7:65–68PubMedCrossRefGoogle Scholar
  44. Tada KFernandes J, Saudubray JM, Berghe G van den (1995) Nonketotic hyperglycinemia. In: (eds) Inborn Metabolic Diseases, 2nd ed. Springer, Berlin Heidelberg New York, pp 191–194CrossRefGoogle Scholar
  45. Fowler B (1997) Disorders of homocysteine metabolism. J Inher Metab Dis 20: 270–285PubMedCrossRefGoogle Scholar
  46. Miner SES, Evrovski J, Cole DEC (1997) Clinical chemistry and molecular biology of homocysteine metabolism: an update. Clin Biochem 30:189–201PubMedCrossRefGoogle Scholar
  47. Van den Berg M, Boers GHJ (1996) Homocystinuria: what about mild hyperhomocysteinaemia? Postgrad Med J 72: 513–518PubMedCrossRefPubMedCentralGoogle Scholar
  48. McInnes RR, Arshinoff SA, Bell L, Marliss EB, McCulloch JC (1981) Hy-perornithinaemia and gyrate atrophy of the retina: improvement of vision during treatment with a low-arginine diet. Lancet 1: 513–516PubMedCrossRefGoogle Scholar
  49. Shih VE Fernandes J, Saudubray JM, Berghe G van den (1995) Ornithine. In: (eds) Inborn Metabolic Diseases, 2nd ed. Springer, Berlin Heidelberg New York, pp 183–190CrossRefGoogle Scholar
  50. Fink JK, Brouwers P, Barton N et al. (1989) Neurologic complications in long-standing nephropathic cystinosis. Arch Neurol 46: 543–854PubMedCrossRefGoogle Scholar
  51. Gahl WA, Dalakas MC, Charnas L et al. (1988) Myopathy and cystine storage in muscles in a patient with nephropathic cystinosis. N Engl J Med 319:1461–464PubMedCrossRefGoogle Scholar
  52. Markello TC, Bernardini IM, Gahl WA (1993) Improved renal function in children with cystinosis treated with cysteamine. N Engl J Med 328:1157–1162PubMedCrossRefGoogle Scholar
  53. Schneider JA, Clark KF, Greene AA et al. (1995) Recent advances in the treatment of cystinosis. J Inher Metab Dis 18:387–397PubMedCrossRefGoogle Scholar
  54. Town M, Jean G, Cherqui S et al. (1998) A novel gene encoding an integral membrane protein is mutated in nephropathic cystinosis. Nat Genet 18: 319–324PubMedCrossRefGoogle Scholar
  55. Segal S, Thier SOScriver CR, Beaudet AL, Sly WS, Valle D (1995) Cystinuria. In: (eds) The metabolic and molecular bases of inherited disease, 7th ed. McGraw Hill, New York, pp 3581–3601Google Scholar
  56. Johnson JL, Wadman SKScriver CR, Beaudet AL, Sly WS, Valle D (1995) Molybdenum cofactor deficiency and isolated sulfite oxidase deficiency. In: (eds) The metabolic and molecular bases of inherited disease, 7th ed. McGraw Hill, New York, pp 2271–2283Google Scholar
  57. Levy HLScriver CR, Beaudet AL, Sly WS, Valle D (1995) Hartnup disorder. In: (eds) The metabolic and molecular bases of inherited disease, 7th ed. McGraw Hill, New York, pp 3629–3642Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • E. Harms
  • U. Wendel

There are no affiliations available

Personalised recommendations