Sulfonylureas: Pharmacokinetics in Animal Experiments

  • A. Hasselblatt
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 119)


This chapter reviews the pharmacokinetics of the sulfonylurea compounds in animals. This is a rather restricted area which has so far failed to attract significant research effort. As sulfonylureas were developed to be used in man, more attention has been dedicated to their behavior within the human body than to their fate in animals. Thus the data available from animals have not usually exceeded those required for the decision to be made to use these agents in man. In addition, it is likely that not all the relevant data have been made available to the public.


Islet Cell Pancreatic Islet Blood Glucose Lowering Sulfonylurea Receptor Deep Compartment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Achelis JD, Hardebeck K (1955) Über eine neue blutzuckersenkende Substanz. Dtsch Med Wochenschr 80:1452–1455PubMedCrossRefGoogle Scholar
  2. Alexander RW (1966) Prolonged hypoglycemia following acetohexamide administration. Diabetes 15:362–364PubMedGoogle Scholar
  3. Antal EJ, Gillespie WR, Phillips JP, Albert KS (1982) The effect of food on the bioavailability and pharmacodynamics of tolbutamide in diabetic patients. Eur J Clin Pharmacol 22:459–462PubMedCrossRefGoogle Scholar
  4. Balant L (1981) Clinical pharmacokinetics of sulphonylurea hypoglycaemic drugs. Clin Pharmacokinet 6:215–241PubMedCrossRefGoogle Scholar
  5. Balant L, Zahnd G, Gorgia A, Schwarz R, Fabre J (1973) Pharmacokinetics of glipizide in man: influence of renal insufficiency. Diabetologia 9:331–338CrossRefGoogle Scholar
  6. Balant L, Fabre J, Zahnd GR (1975) Comparison of the pharmacokinetics of glipizide and glibenclamide in man. Eur J Clin Pharmacol 8:63–69PubMedCrossRefGoogle Scholar
  7. Bänder A, Scholz J (1956) Spezielle pharmakologische Untersuchungen mit D860. Dtsch Med Wochenschr 81:889–891PubMedCrossRefGoogle Scholar
  8. Bänder A, Häussier A, Scholz J (1957) Ergänzende pharmakologische Untersuchungen über Rastinon. Dtsch Med Wochenschr 82:1557–1564PubMedCrossRefGoogle Scholar
  9. Bargeton D, Roquet J, Rouques A, Chassain A, Bieder A (1965) Action sur la glycemic du rat d’un derivé du theadiazole. Arch Int Pharmacodyn Ther 153: 379–404PubMedGoogle Scholar
  10. Benakis A, Glasson B (1980) Metabolic study of 14C-labelled gliclazide in normal rats and in rats with streptozotocin induced diabetes. In: Gliclazide : The Royal Society of Medicine. Int Congr Symp Ser 20:57–69Google Scholar
  11. Berger W (1971) Schwere Hypoglykämiezwischenfälle unter der Behandlung mit Sulfonylharnstoffen. Resultate einer gesamtschweizerischen Umfrage in den Jahren 1968 und 1969. Schweiz Med Wochenschr 101:1013–1022PubMedGoogle Scholar
  12. Berger W, Spring P (1970) Beeinflussung der blutzuckersenkenden Wirkung oraler Antidiabetika durch andere Medikamente und Niereninsuffizienz. Internist (Berl) 11:436–441Google Scholar
  13. Bernardi H, Fosset M, Lazdunski M (1988) Characterisation, purification and affinity labelling of the brain 3H-glibenclamide-binding protein, a putative neuronal ATP-regulated K+-channel. Proc Natl Acad Sci USA 85:9816–9820PubMedCrossRefGoogle Scholar
  14. Bigler F, Rentsch G, Rieder J (1971) Metabolism and pharmacokinetics of Ro 6–4563. In: Dubach UC, Bückert A (eds) Recent hypoglycemic sulfonylureas. Huber, BernGoogle Scholar
  15. Brasselton WE, Bransome ED, Huff TA (1977) Measurement of antidiabetic sulfonylureas in serum by gas chromatography with electron capture detection. Diabetes 26:50–57CrossRefGoogle Scholar
  16. Brotherton PM, McMartin C (1969) A study of the metabolic fate of chlorpropamide in man. Clin Pharmacol Ther 10:505–514PubMedGoogle Scholar
  17. Brown KF, Crooks MJ (1976) Displacement of tolbutamide, glibenclamide and chlorpropamide from serum albumin by anionic drugs. Biochem Pharmacol 25:1175–1178PubMedCrossRefGoogle Scholar
  18. Büttner H, Portwich F (1967) Kompetitionsphänomene bei der Bindung von Pharmaka an Albumin. Klin Wochenschr 45:225–230PubMedCrossRefGoogle Scholar
  19. Campbell DB, Adriaenssens P, Hopkins YW, Gordon B (1980) Pharmacokinetics and metabolism of gliclazide: a review. In: Gliclazide A: The Royal Society of Medicine. Int Congr Symp Ser 20Google Scholar
  20. Carpentier JL, Sawano F, Ravazzola M, Malaisse WJ (1986) Internalization of 3H-glibenclamide in pancreatic islet cells. Diabetologia 29:259–261PubMedCrossRefGoogle Scholar
  21. Christensen LK, Hansen JM, Kristensen M (1963) Sulphaphenazole-induced hypo-glycaemic attacks in tolbutamide-treated patients. Lancet 11:1298–1301CrossRefGoogle Scholar
  22. Cohen BD, Galloway JA, McMahon RE, Culp HW, Root MA, Henriques KJ (1967) Carbohydrate metabolism in uremia: blood glucose response to sulfonylurea. Am J Med Sci 254:608–618PubMedCrossRefGoogle Scholar
  23. Crooks MJ, Brown KF (1974) The binding of sulphonylureas to serum albumin. J Pharm Pharmacol 26:304–311PubMedCrossRefGoogle Scholar
  24. Crooks MJ, Brown KF (1975) Interaction of glipizide with human serum albumin. Biochem Pharmacol 24:298–299PubMedCrossRefGoogle Scholar
  25. Darby FJ, Grundy RK, Price-Evans DA (1972) Apparent Michaelis constants for the metabolism of (ureyl-14C)-colbutamide by human liver preparations. Biochm Pharmacol 21:407–414CrossRefGoogle Scholar
  26. Eckhardt W, Rudolph R, Sauer H, Schubert WR, Undeutsch D (1972) Zur pharmakologischen Interferenz von Glibornurid mit Sulphaphenazol, Phenylbutazon und Phenprocoumon beim Menschen. Arzneimittelforschung 22:2212–2219PubMedGoogle Scholar
  27. Elrick H, Purneil A (1957) The response of kidney, liver and peripheral tissues to tolbutamide. Ann NY Acad Sci 71:38–45PubMedCrossRefGoogle Scholar
  28. Findlay J (1992) Effect of pH upon the inhibition by sulphonylurea drugs of ATP-sensitive K+-channels in cardiac muscle. J Pharmacol Exper Therap 262:71–79Google Scholar
  29. Fuccella LM, Tamassia V, Valzelli G (1973) Metabolism and kinetics of the hypoglycemic agent glipizide in man. Comparison with glibenclamide. J Clin Pharmacol 13:68–75Google Scholar
  30. Garret ER (1970) The clinical significance of pharmacokinetics. In: Dengler HJ (ed) Pharmacological and clinical significance of pharmacokinetics. Stuttgart, Schattauer, pp 5–21Google Scholar
  31. Geisen K, Hitzel U (1985) Ökonomoupoulos, R., Pünter, J., Weyer, R., and Summ, H.-D.: Inhibition of H-glibenclamide binding to sulfonylurea receptors by oral antidiabetics. Arzneimittelforschung 35:707–712PubMedGoogle Scholar
  32. Gerhards E, Gibian H, Kolb KH (1964) Der Stoffwechsel von Glykodiazin beim Menschen. Arzneimittelforschung 14:394–402PubMedGoogle Scholar
  33. Gerhards E, Kolb KH, Schulze PE (1966) Über 2 Benzolsulfonylamino-5(β-methoxy-äthoxy)-pyrimidin (Glykodiazin). V. In vitro und in vivo Versuche zum Einfluß von Phenyläthylbarbitursäure (Luminal) auf den Stoffwechsel und die blutzuckersenkende Wirkung des Glykodiazin. Naunyn Schmiedeberg’s Arch Pharmak 231:407–419Google Scholar
  34. Hansen JM, Christensen LK (1977) Drug-interactions with oral sulphonylurea hypo-glycaemic drugs. Drugs 13:24–34PubMedCrossRefGoogle Scholar
  35. Hasselblatt A (1965) Die Verdrängung von Bromsulphalein und von Bilirubin aus dem Blut, eine Nebenwirkung von Tolbutamid. Gastroenterologia (Basel) 104[Suppl]: 148–152CrossRefGoogle Scholar
  36. Hasselblatt A (1969) Die Hemmung der Ketogenese im Lebergewebe durch Tolbutamid und Glykodiazin in vitro. Naunyn-Schmiedeberg’s Arch Pharmak 202:152–164CrossRefGoogle Scholar
  37. Hasselblatt A (1971) Interactions of drugs at plasma protein binding sites. In: Toxicological problems of drug combinations. Excerpta Medica Congress Ser 254:89–97Google Scholar
  38. Hasselblatt A (1973) The pharmacology of the blood sugar lowering sulfonylurea drugs. In: Proc 5th Int Congr Pharmacol 1972. Karger, Basel, pp 206–213Google Scholar
  39. Hasselblatt A, Hukuhara T (1964) Die Wirkung von Tolbutamid auf die Elimination von Bromsulphalein aus dem Blut. Klin Wochenschr 42:449–454PubMedCrossRefGoogle Scholar
  40. Haufe F, Hasselblatt A, Schoepf HJ (1965) Speciesunterschiede in der Wirkung von Tolbutamid und Probenecid auf die Konzentration von injiziertem Bromsulphalein (BSP) im Blut, Sci ne Konjugation in der Leber und die Ausscheidung mit der Galle. Naunyn-Schmiedeberg’s Arch Pharmak 250:256CrossRefGoogle Scholar
  41. Haupt E, Köbereich W, Beyer J, Schöffling K (1971) Pharmacodynamic aspects of tolbutamide, glibenclamide, glibornuride and glisoxepide. Diabetologia 7:449–454PubMedCrossRefGoogle Scholar
  42. Held H, Kaminski B, von Oldershausen HF (1970) Die Beeinflussung der Elimination von Glykodiazin durch Leber- und Nierenfunktionsstörungen und durch eine Behandlung mit Phenylbutazon, Phenprocoumon und Doxycyclin. Diabetologia 6:386–391PubMedCrossRefGoogle Scholar
  43. Hellman B (1974) Potentiating effects of drugs on the binding of glibenclamide to pancreatic beta cells. Metabolism 23:839–846PubMedCrossRefGoogle Scholar
  44. Hellman B, Täljedal JB (1975) Effects of sulfonylurea derivatives on pancreatic Heffter Heubner Handb Exp Pharm 32 (2):175–194Google Scholar
  45. Hellman B, Sehlin J, Täljedal JB (1984) Glibenclamide is exceptional among hypo-glycaemic sulphonylureas in accumulating progressively in β-cell-rich pancreatic islets. Acta Endocrinol (Copenh) 105:385–390Google Scholar
  46. Hellman B, Idahl LA, Tjälve H, Danielsson A, Lernmark A (1969) Beobachtungen zum Wirkungsmechanismus des hypoglykämisch wirksamen Sulfonylharnstoff-Präparates HB 419. Arzneimittelforschung 19:1472–1476PubMedGoogle Scholar
  47. Hellman B, Sehlin J, Täljedal IB (1971) The pancreatic B-cell recognition of insulin secretagogues. Site of action of tolbutamide. Biochem Biophys Res Commun 45:1384–1388PubMedCrossRefGoogle Scholar
  48. Heptner W, Christ O, Kellner HM, Rupp W (1969) Pharmacokinetics of a new highly effective hypoglycemic sulfonylurea derivative. Acta Diabetol Lat 6[Suppl 1]:105–115PubMedGoogle Scholar
  49. Holmes B, Heal RC, Brogden RM, Speight TM, Avery GS (1984) Gliclazide. Drugs 27:301–327CrossRefGoogle Scholar
  50. Hsu PL, Ma JKH, Luzzi LA (1974) Interactions of sulfonylureas with plasma proteins. J Pharmac Sci 63:570–573CrossRefGoogle Scholar
  51. Johnson PC, Hermes AR, Driscoll T, West KM (1959) Metabolic fate of chlorpropamide in man. Ann NY Acad Sci 74:459–470PubMedCrossRefGoogle Scholar
  52. Joost HG, Hasselblatt A (1977) Effects of polymer-linked sulfonylurea derivatives on insulin release. Naunyn-Schmiedeberg’s Arch Pharmacol 297:81–84CrossRefGoogle Scholar
  53. Judis J (1972) Binding of sulfonylureas to serum proteins. J Pharm Sci 61:89–93PubMedCrossRefGoogle Scholar
  54. Judis J (1973) Displacements of sulfonylureas from human serum proteins by coumarin derivatives and cortical steroids. J Pharm Sci 62:232–237PubMedCrossRefGoogle Scholar
  55. Kärkkainen S, Vapaatalo H, Neuvonen PJ (1983) Urine pH is important for chlorpropamide elimination. Diabetes Care 6:313PubMedGoogle Scholar
  56. Kaubisch N, Hammer R, Wollheim C, Renold AE, Offord RE (1987) Specific receptors for sulfonylureas in brain and in a B-cell tumour of the rat. Biochem Pharmacol 31:1171–1174CrossRefGoogle Scholar
  57. Kellner HM, Christ O, Rupp W, Heptner W (1969) Resorption, Verteilung und Ausscheidung nach Gabe von 14C-markiertem HB419 an Kaninchen, Ratten und Hunden. Arzneimittelforschung 19:1388–1400PubMedGoogle Scholar
  58. Kolb KH, Kramer M, Schulze PE (1964) Resorption, Verteilung und Ausscheidung von radioaktiv markiertem 2-Benzolsulfonamido-5-(β-methoxy-äthoxy)-pyrimidin (Glykodiazin) im Tierversuch. Arzneimittelforschung 14:385–389PubMedGoogle Scholar
  59. Kolb KH, Mützel W, Speck U, Schulze PE (1974a) Pharmakokinetik und Metabolismus von Pro-DiabanR. In: Schöffling K, Kroneberg G, Laudahn G (eds) Pro-Diaban (Glisoxepid). Schattauer, Stuttgart, pp 29–37Google Scholar
  60. Kolb KH, Schulze PE, Speck U, Acksteiner B (1974b) Pharmakokinetik von radioaktiv markiertem Glisoxepid beim Tier. Arzneimittelforschung 24:397–403PubMedGoogle Scholar
  61. Kopitar Z (1975) Humanpharmakokinetik und Metabolismus von 14C-markiertem Gliquidon. Arzneimittelforschung 25:1455–1460PubMedGoogle Scholar
  62. Kopitar Z, Koss FW (1975) Pharmakokinetisches Verhalten von Gliquidone (AR-DF 26), einem neuen Sulfonylharnstoff. Arzneimittelforschung 25:1933–1983PubMedGoogle Scholar
  63. Kuether CA, Clark MR, Scott EG, Lee HM, Pettinga CW (1956) Lack of effect of carbutamide on activity of rat liver glucose-6-phosphatase. Proc Soc Exp Biol (NY) 93:215–217CrossRefGoogle Scholar
  64. Lorch E, Gey KF, Bigler F, Rieder J, Rentsch G, Schärer K, Hummler H (1971) Tierexperimentelle Untersuchungen mit Glibornurid, vol. 1. In: Magyar und L, Beringer A (eds) Verh. II. Int Donau Sympos. Wiener Med Akad, pp 359–363Google Scholar
  65. Louis H, Fajans SS, Conn JW, Struck WA, Wright JB, Johnson JL (1956) The structure of a urinary excretion product of l-butyl-3-p-tolylsulfonylurea (orinase). J Am Chem Soc 78:5701–5702CrossRefGoogle Scholar
  66. Marchetti P, Navalesi R (1989) Pharmacokinetic-pharmacodynamic relationships of oral hypoglycemic agents. Clin Pharmacokinet 16:100–128PubMedCrossRefGoogle Scholar
  67. Mohnike G, Wittenhagen G, Langenbeck W (1958) Über das Ausscheidungsprodukt von N-(4-methyl-benzolsulfonyl)-N’-butylharnstoff beim Hund. Naturwissenschaften 45:13CrossRefGoogle Scholar
  68. Monro AM, Welling PG (1971) The bioavailability in man of marketed brands of chlorpropamide. Eur J Clin Pharmacol 7:47–49CrossRefGoogle Scholar
  69. Nelson DA, Aquilar-Bryan L, Bryan J (1992) Specificity of photolabeling of β-cell membrane proteins with an 125I-labeled glyburide analog. J Biol Chem 267: 14928–14933PubMedGoogle Scholar
  70. Nelson E, O’Reilly I (1961) Kinetics of carboxytolbutamide excretion following tolbutamide and carboxytolbutamide administration. J Pharmacol Exper Ther 132:103–109Google Scholar
  71. Neuvonen PJ, Kärkkainen S (1983) Effects of charcoal, sodium bicarbonate, and ammonium chloride on chlorpropamide kinetics. Clin Pharmacol Ther 33:386–393PubMedCrossRefGoogle Scholar
  72. Neuvonen PJ, Kannisto H, Hirvisalo E (1830) Effect of activated charcoal on absorption of tolbutamide and valproate in man. Eur J Clin Pharmacol 24:243–246CrossRefGoogle Scholar
  73. Niki I, Kelly RP, Ashcroft SJH, Ashcroft FM (1989) ATP-sensitive K-channels in HIT-T15 β-cells studied by patch clamp methods. 86Rb efflux and glibenclamide binding. Pfluger’s Arch 415:47–55CrossRefGoogle Scholar
  74. Nistrup-Madsen S, Fog-Möller F, Persson I (1971) Distribution of tolbutamide and chlorpropamide after administration to non diabetic rats. Eur J Pharmacol 13:374–380PubMedCrossRefGoogle Scholar
  75. Olson SC, Ayres EJ, Albert KS (1985) Effect of food and tablet age on relative bioavailability and pharmacodynamics of two tolbutamide products. J Pharm Sci 74:735–739PubMedCrossRefGoogle Scholar
  76. Panten U, Burgfeld J, Goerke F, Rennicke M, Schwanstecher M, Wallasch A, Zünkler BJ, Lenzen S (1989) Control of insulin secretion by sulfonylureas, meglitinide and diazoxide in relation to their binding to the sulfonylurea receptor in pancreatic islets. Biochem Pharmacol 38:1217–1229PubMedCrossRefGoogle Scholar
  77. Panten U, Schwanstecher M, Schwanstecher C (1992) Pancreatic and extrapancreatic sulfonylurea receptors. Horm Metab Res 24:549–554PubMedCrossRefGoogle Scholar
  78. Pearson JC (1985) Pharmacokinetics of glyburide. Am J Med 79 [Suppl3B]:67–71PubMedCrossRefGoogle Scholar
  79. Peart GF, Boutagy J, Shenfield GM (1987) Lack of relationship between tolbutamide metabolism and debrisoquine oxidation phenotype. Eur J Clin Pharmacol 33: 397–401PubMedCrossRefGoogle Scholar
  80. Petitpierre B, Fabre J (1972) Effect de Insuffisance renale sur l’action hypoglycé-miante des sulfonylurées. Schweiz Med Wochenschr 102:570–582Google Scholar
  81. Raaflaub J, Baethke R, Sorge F, Meier JM (1978) Pharmacokinetics of glibornuride and its metabolites in patients with renal disease. 7th Int Congr Pharmacol ParisGoogle Scholar
  82. Remmer H, Siegert M, Mercker HJ (1964) Vermehrung arzneimittelhydroxylierender Fermente durch Tolbutamid. Naunyn-Schmiedeberg’s Arch Pharmacol 249:71–84Google Scholar
  83. Rentsch G, Schmidt HAE, Rieder J (1972) Zur Pharmakokinetik von Glibornurid. Arzeimittelforschung 22:2209–2212Google Scholar
  84. Rupp W, Christ O, Heptner W (1969) Resorption, Ausscheidung und Metabolismus nach intravenöser und oraler Gabe von HB419-14C an Menschen. Arzneimittelforschung 19:1428–1434PubMedGoogle Scholar
  85. Rupp W, Christ O, Fulberth W (1972) Untersuchungen zur Bioavailability von Glibenclamid. Arzneimittelforschung 22:471–473PubMedGoogle Scholar
  86. Rupp W, Dibbern HW, Hajclu P, Ross G, Vander EE (1975) Untersuchungen zur Bioaequivalenz von Tolbutamid. Dtsch Med Wochenschr 100:690–695PubMedCrossRefGoogle Scholar
  87. Samimi H, Loutan L, Balant L, Tillol’Es M, Fabre J (1977) Metabolites des sulfonylurées hypoglycemiantes: experiences avec le glibenclamide chez le rat. Schweiz Med Wochenschr 107:1291–1296PubMedGoogle Scholar
  88. Sartor G, Melander A, Scherstén B, Wählin-Boll E (1980) Influence of food and age on the single-dose kinetics and effects of tolbutamide and chlorpropamide. Eur J Clin Pharmacol 17:285–293PubMedCrossRefGoogle Scholar
  89. Schlossmann K (1974a) Proteinbindung von Glisoxepid und Sci n Einfluß auf die Proteinbindung von Phenprocoumon. Arzneimittelforschung 24:392–403PubMedGoogle Scholar
  90. Schossmann K (1974b) Wechselwirkungen in der Proteinbindung zwischen Pro-DiabanR und Phenprocoumon bzw. Bilirubin im Vergleich zu Tolbutamid. & In: O Schöffling K, Kroneberg G, Laudahn G (eds) Schattauer, Stuttgart, pp 39–44Google Scholar
  91. Schmidt HAE, Schoog M, Schweer KH, Winkler E (1973) Pharmacokinetics and pharmacodynamics as well as metabolism following orally and intravenously administered 14C-gliplizide, a new antidiabetic. Diabetologia [Suppl 9]:320–330Google Scholar
  92. Schmidt FH, Hrska VE, Heesen D, Schulz O, Schulz E (1974) Plasmaspiegel und Ausscheidung von Glibenclamid bei niereninsuffizienten und leberkranken Patienten im akuten Versuch. Congress of the German Diabetes Society Abstr no 89, 9Google Scholar
  93. Scholz J, Bänder A (1956) Über die orale Behandlung des Diabetes mellitus mit N-(4-Methyl-benzol-sulfonyl)-N′-butyl-harnstoff (D860) Pharmakologie. Dtsch Med Wochenschr 81:825–826Google Scholar
  94. Schulz E, Schmidt FH (1970a) Blutzuckersenkende Wirkung von Hydroxytolbutamid beim Menschen. Klin Wochenschr 48:759–760PubMedCrossRefGoogle Scholar
  95. Schulz E, Schmidt FH (1970b) Abbauhemmung von Tolbutamid durch Sulfaphenazol beim Menschen. Pharmacologia Clinica 2:150–154CrossRefGoogle Scholar
  96. Schulz E, Koch K, Schmidt FH (1971) Pharmakokinetik und Metabolismus von Glibenclamid (HB419) in Gegenwart von Phenylbutazon. Eur J Clin Pharmacol 4:32–37PubMedCrossRefGoogle Scholar
  97. Schwanstecher M, Löser S, Rietze I, Panten U (1991) Phosphate and thiophosphate group donating adenine and guanine nucleotides inhibit glibenclamide binding to membranes from pancreatic islets. Naunyn-Schmiedeberg’s Arch Pharmacol 343:83–89Google Scholar
  98. Schwanstecher M, Schaupp U, Löser S, Panten U (1992) The binding properties of the particulate and solubilized sulfonylurea receptor from cerebral cortex are modulated by the Mg2+ complex of ATP. J Neurochem 59:1325–1335PubMedCrossRefGoogle Scholar
  99. Schwanstecher M, Löser S, Chudziak F, Bachmann C, Panten U (1994) Photoaffinity labeling of the cerebral sulfonylurea receptor using a novel radioiodinated azidoglibenclamide analogue. J Neurochem 63: in pressGoogle Scholar
  100. Schwarzkopf T, and Kewitz H (1977) Elimination of glisoxepide in patients with renal failure. Naunyn-Schmiedeberg’s Arch Pharmacol 297:R61CrossRefGoogle Scholar
  101. Shima K, Tanaka A, Ikegami H, Tabata M, Sawazaki N, Kumahara Y (1983) Effect of dietary fibre, glucomannan, on absorption of sulfonylurea in man. Horm Metabol Res 15:1–3CrossRefGoogle Scholar
  102. Stengard JH, Saarni HU, Knip M, Lahtela JT, Stenbäck F, Sotaniemi EA (1986) Sulphonylurea and glucose metabolism in phenobarbital induced rats. Res Commun Chem Path Pharmacol 54:147Google Scholar
  103. Stowers JM, Mahler RF, Hunter RB (1958) Pharmacology and mode of actions of sulphonylureas in man. Lancet 1:278–283PubMedCrossRefGoogle Scholar
  104. Stuhlfauth K, Mehnert H, Schäfer G, Kallampetsos G (1960) Untersuchungen zum Wirkungsmechanismus der Sulfonylharnstoffe. Klin Wochenschr 38:825–826CrossRefGoogle Scholar
  105. Südhof H, Altenburg S, Sander E (1958) Zur Frage der D860-Eliminationsgesch-windigkeit aus dem Serum beim Diabetiker. Klin Wochenschr 36:585PubMedCrossRefGoogle Scholar
  106. Syvälahti EKG, Pihlajamäki, Iisalo EJ (1974) Rifampicin and drug metabolism. Lancet 11:232–233CrossRefGoogle Scholar
  107. Tagg J, Yasuda DM, Tanabe M, Mitoma C (1967) Metabolic studies of tolbutamide in the rat. Biochem Pharmacol 16:143–153CrossRefGoogle Scholar
  108. Taylor JA (1972) Pharmacokinetics and biotransformation of chlorpropamide in man. Clin Pharmacol Ther 13:710–718PubMedGoogle Scholar
  109. Taylor JA (1974) Pharmacokinetics and biotransformation of chlorpropamide in the rat and dog. Drug Metabolism Disposition Biol Fate Chem 2:221–227Google Scholar
  110. Wählin-Boll E, Melander A, Sartor G, Scherstein B (1980) Influence of food intake on the absorption and effect of glipizide in diabetics and in healthy subjects. Eur J Clin Pharmacol 18:279–283PubMedCrossRefGoogle Scholar
  111. Welch RM (1972) Altered drug toxicity associated with hepatic enzyme induction. In: de Baker SB and Neuhaus GA (eds) Proc. Europ Soc Drug Toxicity XIII. Excerpta Medica, AmsterdamGoogle Scholar
  112. Welles JS, Root MA, Anderson RC (1961) Metabolic reduction of l-(p-acetylben-zenesulfonyl)-3-cyclohexylurea (Acetohexamide) in different species. Proc Soc Exp Biol Med 107:583–585PubMedCrossRefGoogle Scholar
  113. Wick AN, Britton B, Grabowski, R (1956) The action of a sulfonylurea hypoglycemic agent (orinase) in extrahepatic tissues. Metabolism 5:739–743PubMedGoogle Scholar
  114. Wishinsky H, Glaser FJ, Perkal S (1962) Protein interactions of sulfonylurea compounds. Diabetes 11 [Suppl]: 18–28PubMedGoogle Scholar
  115. Wittenhagen G und Mohnike G (1956) Über das Ausscheidungsprodukt von D860. Dtsch Med Wochenschr 81:887–888PubMedGoogle Scholar
  116. Zünkler BJ, Trube G, Panten U (1989) How do sulfonylurea compounds approach their receptor in the B-cell plasma membrane? Naunyn-Schmiedeberg’s Arch Pharmacol 340:328–332Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • A. Hasselblatt

There are no affiliations available

Personalised recommendations