Analytical Methods of Determination of Glucosidase Inhibitors

  • H. J. Ploschke
  • H. Schlecker
  • S. Seip
  • C. Wünsche
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 119)


This short review is limited to enzyme inhibitors with a carbohydrate or pseudosaccharide structure. It describes the physical methods used to isolate the substances and determine their physicochemical properties: column chromatography for isolation, liquid and gas chromatography for separation and quantification, special preparative methods such as Craig distribution, and spectroscopic techniques for structure determination. Individual data such as melting points, boiling points, and specific rotations have not been compiled, since they are not very informative for such diverse chemical species. Summaries of all the physicochemical properties of the individual glucosidase inhibitors can be found in the original literature, cited in Chap. 15, this volume, e.g., for acarbose in Takahashi et al. (1989). Nuclear magnetic resonance (NMR) and mass spectroscopic data for MDL 25637 (Merrell-Dow) have been described by Anzeveno et al. (1989) and LIU (1987). The physicochemical properties including NMR data to AO 128 (Voglibose) were presented by Fukase and Horii (1992)


Nuclear Magnetic Resonance Nuclear Magnetic Resonance Spectroscopy Fast Atom Bombardment Preparative Separation Field Desorption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahr HJ, Boberg M, Krause HP, Maul W, Müller FO, Ploschke HJ, Weber H, Wünsche C (1989) Pharmacokinetics of acarbose part 1: absorption, concentration in plasma, metabolism and excretion after single administration of [14C] acarbose to rats, dog and man. Arzneimittelforschung 39(11): 1254–1260PubMedGoogle Scholar
  2. Anzeveno PB, Creemer LJ, Daniel KJ, King RC, Liu PS (1989) A facile, practical synthesis of 2,6-dideoxy-2,6-imino-7–0-β-D-glucopyranosyl-D-glycero-L-guloheptitol (MDL 25637). J Organic Chem 54:2539–2542CrossRefGoogle Scholar
  3. Arai M, Sumida M, Fukuhara K, Kainosho M, Murao S (1986) Isolation and characterization of amylase inhibitors. Agricultural Biol Chem 50:639–644CrossRefGoogle Scholar
  4. Beale JM, Cottrel CE, Keller PJ, Floss HG (1987) Development of triple-quantum “INDAEQUATE” for biosynthetic studies. J Magn Reson 72:574–578Google Scholar
  5. Benninghoven A, Musche H, Wünsche C (1990) SIMS (secondary ion mass spectrometry) in pharmaceutical research. In: Benninghoven A, Evans CA, McKeegan KD, Stroms HA, Werner HW (eds) Secondary ion mass spectrometry SIMS VII. Wiley, New York, p 293Google Scholar
  6. Boberg M, Kurz J, Ploschke HJ, Schmitt P, Scholl H, Schüller M, Wünsche C (1990) Isolation and structural elucidation of biotransformation products from acarbose. Arzneimittelforschung 40(1):555–563PubMedGoogle Scholar
  7. Bock K, Pedersen H (1984) The solution conformation of acarbose. Carbohydr Res 132:142–149CrossRefGoogle Scholar
  8. Bock K, Pedersen H (1986) Protein-carbohydrate interactions: the substrate specificity of amyloglucosidase. FEMS Symp (Protein-Carbohydr Interact Biol Syst) 31:173–182Google Scholar
  9. Brendel K, Roszel NO, Wheat RW, Davidson EA (1967) Ion-exchange separation and automated assay of some hexosamines. Anal Biochem 18:147–160CrossRefGoogle Scholar
  10. Dabrowski J (1986) 2D NMR analysis of oligosaccharides. In: Croasmun WR, Carlson RMK (eds) Methods in stereochemical analysis: two-dimensional NMR spectroscopy. Verlag Chemie, Weinheim, p 349Google Scholar
  11. Daigo K, Inamori Y, Takemoto T (1986) Studies on the constituents of the water extract of the root of mulberry tree (Morus bombycis Koidz). Chem Pharm Bull 34:2243–2246CrossRefGoogle Scholar
  12. Degwert U, Van Huelst R, Pape H, Richard E, Beale JM, Keller PJ, Lee J, Floss HG (1987) Studies on the biosynthesis of the alpha-glucosidase inhibitor acarbose, a m-C7N unit not derived from the shikimate pathway. J Antibiot 40:855–861PubMedCrossRefGoogle Scholar
  13. Determann H (1967) Gelchromatographie, Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  14. Donaldson MJ, Broby H, Adlard MW, Bücke C (1990) High pressure liquid chromatography and pulsed amperometric detection of castanospermine and related alkaloids. Phytochem Anal 1:18–21CrossRefGoogle Scholar
  15. Dorfner K (1970) Ionenaustauscher, 3rd edn. De Gruyter, BerlinGoogle Scholar
  16. Engelhardt H (1975) Hochdruckflüssigkeitschromatographie. Springer, Berlin Heidelberg New YorkGoogle Scholar
  17. Fallon A, Booth RFG, Bell LD (1987) Carbohydrates. In: Burdan RH, van Knippenberg PH (eds) Laboratory techniques in biochemistry and molecular biology, vol 17. Elsevier, Amsterdam, p 213Google Scholar
  18. Floss HG, Keller PJ, Beale JM (1986) Studies on the biosynthesis of antibiotics. J Nat Prod 49(6):957–970PubMedCrossRefGoogle Scholar
  19. Fukase H, Horii S (1992) Synthesis of valiolamine and its N-substituted derivatives AO-128, validoxylamine G, and validamycin G via branched-chain inosose derivatives. J Organic Chem 57: 3651–3658CrossRefGoogle Scholar
  20. Fukushima K (1981) Field desorption mass spectrometry of bioactive substances. Nippon Kagaku Kaishi 5:874–882CrossRefGoogle Scholar
  21. Geckeler KE, Eckstein H (1987) Analytische und präparative Labormethoden. Vieweg, BraunschweigCrossRefGoogle Scholar
  22. Glaser R, Perlin AS (1988) Proton and carbon studies on N-methyl-1-deoxynojiri-mycin, an alpha-D-glucosidase inhibitor. Carbohydr Res 182:169–177CrossRefGoogle Scholar
  23. Goldsmith EJ, Fletterick RJ, Withers S-G (1987) The three-dimensional structure of acarbose bound to glycogen Phosphorylase. J Biol Chem 262:1449–1455PubMedGoogle Scholar
  24. Havlicek J, Samuelson O (1975) Separation of oligosaccharides by partition chromatography on ion exchange resins. Anal Chem 47:1854–1857CrossRefGoogle Scholar
  25. Hecker E (1955) Verteilungsverfahren im Laboratorium. Verlag Chemie, WeinheimGoogle Scholar
  26. Horii S, Fukase H, Matsuo T, Kameda Y, Asano U, Matsui K (1986) Synthesis and α-D-glucosidase inhibitory activity of N-substituted valiolamine derivatives as potential oral antidiabetic agents. J Med Chem 29:1038–1046PubMedCrossRefGoogle Scholar
  27. Inouye S, Tsuruoka T, Niida T (1966) The structure of nojirimicin, a piperidinose sugar antibiotic. J Antibiotics Ser A XIX:288–292Google Scholar
  28. Inouye S, Omoto S, Tsuruoka T, Niida T (1972) Analysis of nojirimycin by gas liquid chromatography and mass spectrometry. Meiji Seiko Kenkyu Nempo 12:96–103Google Scholar
  29. Ishida N, Kumagai K, Niida T, Tsuruoka T, Yumoto H (1967) Nojirimicin, a new antibiotic II. J Antibiotics Ser A XX:66–72Google Scholar
  30. Jandera P, Churacek J (1974) Ion-exchange chromatography of aldehydes, ketones, ethers, alcohols, polyols and saccharides. J Chromatogr 98:55–104CrossRefGoogle Scholar
  31. Junge B, Heiker FR, Kurz J, Müller L, Schmidt DD, Wünsche C (1984) Structure of the alpha D glucosidase inhibitor acarbose. Carbohydr Res 128:235–268CrossRefGoogle Scholar
  32. Kaizuka H, Takahashi K (1983) High-performance liquid chromatographic system for a wide range of naturally occuring glycosides. J Chromatogr 258:135–146CrossRefGoogle Scholar
  33. Kameda Y, Asano N, Yoshikawa M, Takeuchi M, Yamaguchi T, Matsui K (1984) Valiolamine, a new α-glycosidase — inhibiting aminocyclitol produced by Strep-tomyces hygroscopicus. J Antibiotics (Tokyo) XXXVII: 1301–1307CrossRefGoogle Scholar
  34. Liu PS (1987) Total synthesis of 2,6-dideoxy-2,6-imino-7-O-β-D-glucopyranosyl-D-glycero-L-gulo-heptitol hydrochloride: a potent inhibitor of α-glucosidases. J Org Chem 52:4717–4721CrossRefGoogle Scholar
  35. Laine AR, Yoon E, Mahier TJ, Abbas S, DeLappe B, Jain R, Matta K (1991) Nonreducing terminal linkage position determination in intact and permethylated synthetic oligosaccharides having a penultimate aminosugar: fast atom bombardment ionization, collisional inducecd dissociation and tandem mass spectrometry. Biol Mass Spectrom 20:505–514PubMedCrossRefGoogle Scholar
  36. Meyer V (1986) Praxis der Hochdruckflüssigkeitschromatographie, 4th edn. Dies-terweg Salle Sauerländer, FrankfurtGoogle Scholar
  37. Molyneux RJ, Roitman JN, Dunnheim G, Szumilo T, Elbein AD (1986) 6-Epicasta-nospermin, a novel indolizidine alkaloid that inhibits alpha glucosidase. Arch Biochem Biophys 251:450–457PubMedCrossRefGoogle Scholar
  38. Müller L (1985) Microbial glycosidase inhibitors. In: Rehm HJ, Reed G (eds) Biotechnology, vol 4. Verlag Chemie, Weinheim, p 531Google Scholar
  39. Neuhaus D, Williamson M (1989) The nuclear Overhauser effect in structural and conformational analysis. VCH, WeinheimGoogle Scholar
  40. Nishikawa T, Ishida N (1965) A new antibiotic R-468 active against drug-resistant Shigella. J Antibiotics Ser A XVIII: 132–133Google Scholar
  41. Pfeffer M, Siebert G (1986) Prefeeding-dependent anaerobic metabolization of xenobiotics by intestinal bacteria — methods for acarbose metabolites in an artificial colon. Z Ernaehrungswiss 25:189–195CrossRefGoogle Scholar
  42. Ploschke J (1991) Gegenstromverteilung. In: Nürnberg E, Surmann P (eds). Hagers Handbuch der pharmazeutischen Praxis, 5th edn, vol 2, Methoden. Springer, Berlin Heidelberg New York, p 411Google Scholar
  43. Schleich W, Engelhardt H (1989) Möglichkeiten der HPLC in der Zuckeranalytik. GIT Fachz Lab 33:624–630Google Scholar
  44. Schmidt DD, Frommer W, Mueller L, Truscheit E (1979) Glucosidase inhibitors from bacilli. Naturwissenschaften 66(11):584–585PubMedCrossRefGoogle Scholar
  45. Straub A, Effenberger F, Fischer P (1990) Enzyme-catalyzed reactions. IV. Aldo-lase-catalyzed carbon-carbon bond formation for stereoselective synthesis of nitrogen containing carbohydrates. J Organic Chem 55:3926–3932CrossRefGoogle Scholar
  46. Takahashi Y, Sakaguchi F, Morimoto K, Hashimoto K, Funaba T, Hayauchi Y (1989) Physicochemical properties and stability of acarbose (in Japanese). Iyakuhin Kenkyu 20:769–783Google Scholar
  47. Tikhomirov MM, Khorlin A, Voelter W, Bauer H (1978) High-performance liquid chromatographic investigation of the amino acid, amino sugar and neutral sugar content in glycoproteins. J Chromatogr 167:197–203PubMedCrossRefGoogle Scholar
  48. Verhaar LAT, Küster BFM (1981) Liquid chromatography of sugars on silica-based stationary phases. J Chromatogr 220:313–328PubMedCrossRefGoogle Scholar
  49. Withers SG, Street IP (1988) Identification of a covalent alpha-D-glucopyranosyl enzyme intermediate formed on a beta-glucosidase. J Am Chem Soc 110: 8551–8553CrossRefGoogle Scholar
  50. Wünsche C, Benninghoven A, Eicke A, Heinen HJ, Ritter HP, Taylor LCE, Veith J (1984) Comparison of soft ionization techniques with electron impact mass spectrometry for desoxinojirimycin and folic acid derivatives. Organic Mass Spectrom 19:176–182CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • H. J. Ploschke
  • H. Schlecker
  • S. Seip
  • C. Wünsche

There are no affiliations available

Personalised recommendations