GaInNAs: Fundamentals of a New Material System for Near-Infrared Optoelectronics

  • Michael Hetterich
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 146)


In recent years, dilute nitrides such as GaAsN and GaInNAs with typical nitrogen concentrations in the range of a few percent have become the subject of intense research, because they are promising materials for the realization of optoelectronic devices operating in the near infrared (NIR), including semiconductor lasers, resonant cavity enhanced photodetectors [1] and tandem solar cells [2]. Heterojunction bipolar transistors have also been investigated [3]. Of particular technological interest are quantum well structures based on the quaternary compound GaInNAs. As first suggested by Kondow et al. [4] they can form the active region of laser diodes operating at 1.3 or even 1.55 µm, the wavelengths used in present optical fibre communication networks. Up to now, InP-based InGaAsP devices are commonly applied for that purpose. However, this approach has several disadvantages [4, 5]: The electron confinement in InGaAsP structures is quite poor, leading to a high temperature sensitivity of the lasing threshold (i.e. a low T 0). As a practical consequence, thermoelectric cooling is often required. Furthermore, the development of InP-based vertical-cavity surface-emitting lasers (VCSELs) has turned out to be quite problematic, although the latter would have many advantages (e.g. single mode operation and improved coupling to optical fibres). This is due to the lack of materials lattice-matched to InP which comprise a sufficiently large refractive index contrast for the realization of high-reflectivity distributed Bragg reflectors (DBRs) and also have a sufficient thermal conductivity.


Conduction Band Schrodinger Equation Single Mode Operation Heterojunction Bipolar Transistor High Temperature Sensitivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.B. Heroux, X. Yang, W.I. Wang: Appl. Phys. Lett. 75, 2716 (1999)ADSCrossRefGoogle Scholar
  2. 2.
    S.R. Kurtz, A.A. Allerman, E.D. Jones, J.M. Gee, J.J. Banas, B.E. Hammons: Appl. Phys. Lett. 74, 729 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    H.P. Xin, C.W. Tu, M. Geva: Appl. Phys. Lett. 75, 1416 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    M. Kondow, K. Uomi, A. Niwa, T. Kitatani, S. Watahiki, Y. Yazawa: Jpn. J. Appl. Phys. 35, 1273 (1996)ADSCrossRefGoogle Scholar
  5. 5.
    M.C. Larson, M. Kondow, T. Kitatani, K. Tamura, Y. Yazawa, M. Okai: IEEE Photonics Technol. Lett. 9, 1549 (1997)ADSCrossRefGoogle Scholar
  6. 6.
    C. Ellmers, F. Höhnsdorf, J. Koch, C. Agert, S. Leu, D. Karaiskaj, M. Hofmann, W. Stolz, W.W. Rühle: Appl. Phys. Lett. 74, 2271 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    M. Fischer, M. Reinhardt, A. Forchel: IEEE Photon. Technol. Lett. 12, 1313 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    M. Hetterich, M.D. Dawson, A.Yu. Egorov, H. Riechert: Proc. 25th Int. Conf. Phys. Sernicond. (Osaka 2000), part I, ed by N. Miura, T. Ando (Springer proceedings in physics 87, Springer, Berlin Heidelberg New York 2001 ) pp 693–694Google Scholar
  9. 9.
    I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan: J. Appl. Phys. 89, 5815 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    K.D. Choquette, J.F. Klem, A.J. Fischer, O. Blum, A.A. Allerman, I.J. Fritz, S.R. Kurtz, W.G. Breiland, R. Sieg, K.M. Geib, J.W. Scott, R.L. Naone: Electron. Lett. 36, 1388 (2000)CrossRefGoogle Scholar
  11. 11.
    G. Steinle, H. Riechert, A.Yu. Egorov: Electron. Lett. 37, 93 (2001)CrossRefGoogle Scholar
  12. 12.
    M. Kondow, T. Kitatani, K. Nakahara, T. Tanaka: Jpn. J. Appl. Phys. Part 2 38, L1355 (1999)Google Scholar
  13. 13.
    A. Livshits, A.Yu. Egorov, H. Riechert: Electron. Lett. 36, 1381 (2000)CrossRefGoogle Scholar
  14. 14.
    M. Kondow, S. Nakatsuka, T. Kitatani, Y. Yazawa, M. Okai: Jpn. J. Appl. Phys. Part 1 35, 5711 (1996)ADSCrossRefGoogle Scholar
  15. 15.
    M. Fischer, D. Gollub, A. Forchel: Jpn. J. Appl. Phys. Part 1 41, 1162 (2002)Google Scholar
  16. 16.
    M. Hetterich, M.D. Dawson, A.Yu. Egorov, D. Bernklau, H. Riechert: Appl. Phys. Lett. 76, 1030 (2000)ADSCrossRefGoogle Scholar
  17. 17.
    C. Skierbiszewski, P. Perlin, P. Wisniewski, T. Suski, J.F. Geisz, K. Hinged, W. Jantsch, D. E. Mars, W. Walukiewicz: Phys. Rev. B 65, 035207 (2001)Google Scholar
  18. 18.
    C. Skierbiszewski: Semicond. Sci. Technol. 17, 803 (2002)ADSCrossRefGoogle Scholar
  19. 19.
    R. Fehse, S. Tomié, A.R. Adams, S.J. Sweeney, E.P. O’Reilly, A. Andreev, H. Riechert: IEEE J. Select. Topics Quantum Electron. 8, 801 (2002)CrossRefGoogle Scholar
  20. 20.
    N. Tansu, L.J. Mawst: Appl. Phys. Lett. 82, 1500 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    I.A. Buyanova, W.M. Chen, B. Monemar: MRS Internet J. Nitride Semicond. Res. 6 2 (2001) and references thereinGoogle Scholar
  22. 22.
    W. Shan, W. Walukiewicz, K.M. Yu, J.W. Ager III, E.E. Haller, J.F. Geisz, D.J. Friedman, J.M. Olson, S.R. Kurtz, H.P. Xin, C.W. Tu: Phys. Status Solidi B 223, 75 (2001)ADSGoogle Scholar
  23. 23.
    P.J. Klar, H. Grüning, W. Heimbrodt, G. Weiser, J. Koch, K. Volz, W. Stolz, S.W. Koch, S. Tomié, S.A. Choulis, T.J.C. Hosea, E.P. O’Reilly, M. Hofmann, J. Hader, J.V. Moloney: Semicond. Sci. Technol. 17, 830 (2002)ADSCrossRefGoogle Scholar
  24. 24.
    A. Lindsay, E.P. O’Reilly: Solid State Commun. 112, 443 (1999)ADSCrossRefGoogle Scholar
  25. 25.
    W. Shan, W. Walukiewicz, J.W. Ager III, E.E. Haller, J.F. Geisz, D.J. Friedman, J.M. Olson, S.R. Kurtz: Phys. Rev. Lett. 82, 1221 (1999)ADSCrossRefGoogle Scholar
  26. 26.
    E.P. O’Reilly, A. Lindsay, S. Tomié, M. Kamal-Saadi: Semicond. Sci. Technol. 17, 870 (2002)ADSCrossRefGoogle Scholar
  27. 27.
    P.R.C. Kent, A. Zunger: Phys. Rev. B 64, 115208 (2001)Google Scholar
  28. 28.
    M. Hetterich, A. Grau, A.Yu. Egorov, H. Riechert: J. Appl. Phys. 94, 1810 (2003)ADSCrossRefGoogle Scholar
  29. 29.
    I. Suernune, K. Uesugi, W. Walukiewicz: Appl. Phys. Lett. 77, 3021 (2000)ADSCrossRefGoogle Scholar
  30. 30.
    R.J. Potter, N. Balkan, X. Marie, H. Carrère, E. Bedel, G. Lacoste: Phys. Status Solidi (a) 187, 623 (2001)ADSCrossRefGoogle Scholar
  31. 31.
    P.J. Klar, H. Grüning, J. Koch, S. Schäfer, K. Volz, W. Stolz, W. Heimbrodt, A.M. Kamal Saadi, A. Lindsay, E.P. O’Reilly: Phys. Rev. B 64, 121203 (R) (2001)Google Scholar
  32. 32.
    A. Polimeni, M. Capizzi, M. Geddo, M. Fischer, M. Reinhardt, A. Forchel: Phys. Rev. B 63, 195320 (2001)Google Scholar
  33. 33.
    G. Bastard: Wave Mechanics Applied to Semiconductor Heterostructures (Les Editions de Physique, Les Ulis 1988 ) pp 74–76, 112, 113Google Scholar
  34. 34.
    K. Kim, A. Zunger: Phys. Rev. Lett. 86, 2609 (2001)ADSCrossRefGoogle Scholar
  35. 35.
    S. Kurtz, J. Webb, L. Gedvilas, D. Friedman, J. Geisz, J. Olson, R. King, D. Joslin, N. Karam: Appl. Phys. Lett. 78, 748 (2001)ADSGoogle Scholar
  36. 36.
    T. Geppert, J. Wagner, K. Köhler, P. Ganser, M. Maier: Appl. Phys. Lett. 80, 2081 (2002)ADSCrossRefGoogle Scholar
  37. 37.
    M. Hetterich, A. Grau, D. Saez de Jauregui, A.Yu. Egorov, H. Riechert: Physics of Semiconductors 2002, Proc. 26th Int. Conf. Phys. Semicond.,(Edinburgh 2002), ed by A.R. Long, J.H. Davies (Institute of Physics Conference Series Number 171 Bristol, Philadelphia 2003) paper D80Google Scholar
  38. 38.
    W.A. Harrison: Electronic Structure and Properties of Solids ( Dover, New York 1989 ) p 176Google Scholar
  39. 39.
    A. Polimeni, G. Baldassarri Höger von Högersthal, F. Masia, A. Frova, M. Capizzi, S. Sanna, V. Fiorentini, P.J. Klar, W. Stolz: Phys. Rev. B 69. 041201(R) (2004) and references thereinGoogle Scholar
  40. 40.
    V. Grillo, M. Albrecht, T. Remmele, H.P. Strunk, A.Yu. Egorov, H. Riechert: J. Appl. Phys. 90, 3792 (2001)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Michael Hetterich

There are no affiliations available

Personalised recommendations