Excitons in Semiconductors

  • Stephan W. Koch
  • Mackillo Kira
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 146)


The quantum mechanical problem of a single electron-hole pair in a homogeneous semiconductor leads to the Wannier equation, which, for a parabolic bandstructure is mathematically identical to the hydrogen atom Schrödinger equation [1]. This equation can be solved analytically in three and two dimensions, which is relevant for idealized bulk or quantum-well structures. Solutions are also available for quasi-one dimensional systems, however, their treatment requires the regularization of the Coulomb interaction potential [2, 3].


Bound State Solution Exciton Resonance Incoherent Condition Excitonic Feature Coulomb Interaction Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.J. Elliott in: Polarons and Excitons, ed by C.G. Kuper, G.D. Whitefield (Oliver and Boyd 1963 ) pp 269Google Scholar
  2. 2.
    C. Klingshirn, H. Haug: Phys. Rep. 70, 315 (1981) and references thereinGoogle Scholar
  3. 3.
    For a textbook discussion see H. Haug, S. W. Koch: Quantum Theory of the Optical and Electronic Properties of Semiconductors, 4th ed. ( World Scientific, Singapore 2004 )Google Scholar
  4. 4.
    For a textbook discussion see, e.g., C.F. Klingshirn: Semiconductor Optics, 2nd corr. printing ( Springer, Berlin Heidelberg New York 1997 )Google Scholar
  5. 5.
    K. Bohnert, M. Anselment, G. Kobbe, C. Klingshirn, H. Haug, S.W. Koch, S. Schmitt-Rink, F.F. Abraham: Z. Physik B 42, 1 (1981)ADSCrossRefGoogle Scholar
  6. 6.
    S.W. Koch, H. Haug, G. Schmieder, K. Bohnert, C. Klingshirn: Phys. Status Solidi (b) 89, 431 (1978);ADSCrossRefGoogle Scholar
  7. C. Klingshirn, W. Maier, B. Hönerlage, H. Haug, S.W. Koch: Solid State Electronics 21, 1357 (1978)ADSCrossRefGoogle Scholar
  8. 7.
    M. Kira, F. Jahnke, S. W. Koch: Phys. Rev. Lett. 81, 3263 (1998)ADSCrossRefGoogle Scholar
  9. 8.
    R.H.M. Groeneveld, D. Grischkowsky: J. Opt. Soc. Am. B 11, 2502 (1994);)ADSGoogle Scholar
  10. J. Cerne et al.: Phys. Rev. Lett. 77, 1131 (1996)ADSCrossRefGoogle Scholar
  11. 9.
    M. Kira, W. Hoyer, T. Stroucken, S.W. Koch: Phys. Rev. Lett. 87, 176401 (2001)ADSCrossRefGoogle Scholar
  12. 10.
    M. Lindberg, S.W. Koch: Phys. Rev. B 38, 3342 (1988)ADSCrossRefGoogle Scholar
  13. 11.
    W. Schäfer: Journ. Opt. Soc. Am. B 13, 1291 (1996)ADSGoogle Scholar
  14. 12.
    F. Jahnke, M. Kira, S.W. Koch: Z. Physik B 104, 559 (1997)ADSCrossRefGoogle Scholar
  15. 13.
    F. Jahnke, M. Kira, S.W. Koch, G. Khitrova, E.K. Lindmark, T.R. Nelson, D.V. Wick, J.D. Berger, O. Lyngnes, H.M. Gibbs, K. Tai: Phys. Rev. Lett. 77, 5257 (1996)ADSCrossRefGoogle Scholar
  16. 14.
    G. Khitrova, H.M. Gibbs, F. Jahnke, M. Kira, S.W. Koch: Rev. Mod. Phys. 71, 1591 (1999)ADSCrossRefGoogle Scholar
  17. 15.
    H. Wang, K. Ferrio, D.G. Steel, Y.Z. Hu, R. Binder, S.W. Koch: Phys. Rev. Lett. 71, 1261 (1993)ADSCrossRefGoogle Scholar
  18. 16.
    S.W. Koch, T. Meier, F. Jahnke, P. Thomas: Appl. Phys. A 71, 511 (2000)ADSCrossRefGoogle Scholar
  19. 17.
    M. Kira, W. Hoyer, F. Jahnke, S.W. Koch: Prog. Quantum Electron. 23, 189 (1999)ADSCrossRefGoogle Scholar
  20. 18.
    S. Chatterjee et al.: Phys. Rev. Lett. 92, 067402 (2004)ADSCrossRefGoogle Scholar
  21. 19.
    W. Hoyer, M. Kira, S.W. Koch: Phys. Rev. B 67, 155113 (2003)Google Scholar
  22. 20.
    M. Kira, W. Hoyer, S.W. Koch: Solid State Commun. (2004)Google Scholar
  23. 21.
    L. Allen, J.H. Eberly: Optical Resonance and Two-Level Atoms ( Wiley, New York 1975 )Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Stephan W. Koch
  • Mackillo Kira

There are no affiliations available

Personalised recommendations