Environmental and Industrial Optosensing with Tailored Luminescent Ru(II) Polypyridyl Complexes

  • Guillermo Orellana
  • David García-Fresnadillo
Chapter
Part of the Springer Series on Chemical Sensors and Biosensors book series (SSSENSORS, volume 1)

Abstract

The sensitivity, specificity and versatility of optical methods for chemical determinations have turned spectroscopy into one of the most popular techniques for environmental analysis and process control [1, 2]. In most cases, however, the very same attractive features have led (so far) to expensive instrumentation and/or complex methods compared to, for instance, the well-established electrochemical sensors. Fibre-optic chemical sensors (also known as „optodes“) are bound to overcome such limitations provided they use cost-effective optoelectronics and prove to be specific, sensitive and robust enough to fulfill their analytical tasks in air, water and soil quality monitoring as well as in the industrial environment.

Keywords

Light Emit Diode Oxygen Sensor Anal Chim Polymer Support Normal Hydrogen Electrode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Reeve RN (1994) Environmental analysis, Wiley, Chichester, UKGoogle Scholar
  2. 2.
    Arpe HJ (1994) Ullmann’s encyclopedia of industrial chemistry, vol B6: analytical methods II and process control engineering. Wiley-VCH, WeinheimGoogle Scholar
  3. 3.
    (i) Wolfbeis OS (ed) (1991) Fiber optic chemical sensors and biosensors vol 1 0000 2. CRC Press, Boca Raton;Google Scholar
  4. (ii).
    Câmara C, Pérez-Conde C, Moreno-Bondi MC, Rivas C (1991) Chemical sensing with fiber optic devices. In: Wise D, Wingard L (eds) Biosensors with fiber optics, Humana Press, Clifton, p 29;Google Scholar
  5. (iii).
    Câmara C, Pérez-Conde C, Moreno-Bondi MC, Rivas C (1995) Fiber optical sensors applied to field measurements. In: Quevauviller P, Maier, EA, Griepink B (eds) Quality assurance for environmental analysis, Elsevier, Amsterdam, p 165;Google Scholar
  6. (iv).
    López-Higuera JM (ed) ( 2002 ) Handbook of optical fibre sensing technology, Wiley, New YorkGoogle Scholar
  7. 4.
    Lakowicz JR (1994) Topics in fluorescence spectroscopy, vol 4: probe design and chemical sensing. Plenum, New YorkGoogle Scholar
  8. 5.
    Colin F, Quevauviller P (eds) (1998) Standards, measurements and testing for the monitoring of water quality: the contribution of advanced technologies. Elsevier, AmsterdamGoogle Scholar
  9. 6.
    Demas JN, DeGraff BA (1991) Anal Chem 63: 829AGoogle Scholar
  10. 7.
    Orellana G, Moreno-Bondi MC, Bustamante N, Hidalgo E, Ruiz-López JL, García-Alonso JL, Delgado J, Bedoya M, Yânez A, Sicilia JM, (1998) Proc Europt(r)ode IV. Münster, Germany, p 121Google Scholar
  11. 8.
    For example, PreSens Microx, Neuburg a. d. Donau, Germany, for environmental and laboratory oxygen measurements. Ocean Optics FOXY, Dunedin, Fla, USA, for dissolved or gaseous oxygen sensing. Van Essen Instruments Dive, Delft, The Netherlands, for dissolved oxygen in groundwater or surface water. Bioasure D03000, Boston, MA, USA, to monitor dissolved oxygen during fermentation or cell culture processes. Grupo Interlab Optosen, Madrid, Spain, for in situ environmental/industrial oxygen monitoring. Comte MOPS, Hannover, Germany, for environmental and biotechnological applicationsGoogle Scholar
  12. 9.
    Paris JP, Brandt WW (1959) J Am Chem Soc 81: 5001Google Scholar
  13. 10.
    Seddon EA, Seddon K (1984) The chemistry of ruthenium. Elsevier, Amsterdam, p 1173; (ii) Juris A, Balzani V, Barigelletti F, Campagna S, Belser P, Von Zelewsky A (1988) Coord Chem Rev 84:85; (iii) Kalyanasundaram K (1992) Photochemistry of polypyridine and porphyrin complexes. Academic Press, London; (iv) Orellana G, Quiroga ML, de Dios C (1993) Trends in Inorganic Chemistry 3: 109Google Scholar
  14. 11.
    Hoffman MZ, Bolletta F, Moggi L, Hug GL (1989) J Phys Chem Ref Data 18: 219Google Scholar
  15. 12.
    Mandal K, Pearson TDL, Demas JN (1981) Inorg Chem 20: 786Google Scholar
  16. 13.
    (i) Kalyanasundaram K (1987) Photochemistry in microheterogeneous systems. Academic Press, Lausanne; (ii) Moreno-Bondi MC, Orellana G, Turro NJ, Tomalia DA (1990) Macromolecules 23:910; (iii) Ottaviani MF, Ghatlia ND, Turro NJ (1992) J Phys Chem 96: 6075Google Scholar
  17. 14.
    (i) Pyle AM, Barton JK (1990) Probing nucleic acids with transition metal complexes. In: Lippard SJ (ed) Progress in inorganic chemistry, vol 38: bioinorganic chemistry. Wiley, New York, p 413; (ii) Nordén B, Lincoln P, Akerman B, Tuite E (1996) DNA interactions with substitution-inert transition metal ion complexes. In: Sigel A, Sigel H (eds) Metal ions in biological systems, vol 33: probing of nucleic acids by metal ion complexes of small molecules. Marcel Dekker, New York, p 177; (iii) Moucheron C, Kirsch-De Mesmaeker A, Kelly JM (1998) Structure and Bonding 92: 163Google Scholar
  18. 15.
    Lehn JM (1995) Supramolecular chemistry. Wiley-VCH, New YorkGoogle Scholar
  19. 16.
    García-Fresnadillo D, Georgiadou Y, Orellana G, Braun AM, Oliveros E (1996) Helv Chim Acta 79: 1222Google Scholar
  20. 17.
    Gerardi RD, Barnett NW, Lewis SW (1999) Anal Chim Acta 378: 1Google Scholar
  21. 18.
    Riesen H, Wallace L, Krausz E (1997) Int Rev Phys Chem 16: 291Google Scholar
  22. 19.
    Caspar JV, Westmoreland TD, Allen GH, Bradley PG, Meyer TJ, Woodruff WH (1984) J Am Chem Soc 106: 3492Google Scholar
  23. 20.
    Orellana G, Moreno-Bondi MC, Segovia E, Marazuela MD (1992) Anal Chem 64: 2210Google Scholar
  24. 21.
    García Fresnadillo D (1996) PhD thesis, Universidad Complutense de MadridGoogle Scholar
  25. 22.
    Haga M-A (1983) Inorg Chim Acta 75: 29Google Scholar
  26. 23.
    Van Houten J, Watts RJ (1976) J Am Chem Soc 98: 4853Google Scholar
  27. 24.
    Alford PC, Cook MJ, Lewis AP, McAuliffe GSG, Skarda V, Thomson AJ, Glasper JL, Robbins DJ (1985) J Chem Soc Perkin Trans I1: 705Google Scholar
  28. 25.
    Orellana G, Alvarez Ibarra C, Quiroga ML (1988) Bull Soc Chim Belg 97: 731Google Scholar
  29. 26.
    Orellana G, Braun AM (1989) J Photochem Photobiol A 48: 277Google Scholar
  30. 27.
    Ross HB, Boldaji M, Rillema DP, Blanton CB, White RP (1989) Inorg Chem 28: 1013Google Scholar
  31. 28.
    Barigelletti F, De Cola L, Balzani V, Belser P, von Zelewsky A, Vögtle F, Ebmeyer F, Grammenudi S (1989) J Am Chem Soc 111: 4662Google Scholar
  32. 29.
    Milder SJ, Gold JS, Kliger DS (1986) J Phys Chem 90: 548Google Scholar
  33. 30.
    Garcia-Fresnadillo D, Marazuela MD, Moreno-Bondi MC, Orellana G (1999) Langmuir 15: 6451Google Scholar
  34. 31.
    Vo-Dinh T (1984) Room temperature phosphorimetry for chemical analysis. Wiley, New YorkGoogle Scholar
  35. 32.
    Lakowicz JR (1999) Principles of fluorescence spectroscopy. Kluwer Academic/ PlenumGoogle Scholar
  36. 33.
    Nakamura S, Fasol G (1997) The blue laser diode. Springer, Berlin Heidelberg New YorkGoogle Scholar
  37. 34.
    Tyson DS, Henbest KB, Bialecki J, Castellano FN (2001) J Phys Chern A 105: 8154Google Scholar
  38. 35.
    Krause RA (1987) Struct Bond 67: 1Google Scholar
  39. 36.
    Anderson S, Seddon KR (1979) J Chem Res Synop:74Google Scholar
  40. 37.
    Rillema DP, Allen G, Meyer TJ, Conrad D (1983) Inorg Chem 22: 1617Google Scholar
  41. 38.
    Orellana G, Alvarez Ibarra C, Santoro J (1988) Inorg Chem 27: 1025Google Scholar
  42. 39.
    Orellana G, Kirsch-De Mesmaeker A, Turro NJ (1990) Inorg Chem 29: 882Google Scholar
  43. 40.
    Mingoarranz FJ, Moreno-Bondi MC, García-Fresnadillo D, de Dios C, Orellana G (1995) Mickrochim Acta 121: 107Google Scholar
  44. 41.
    Klimant I, Wolfbeis OS (1995) Anal Chem 67: 3160Google Scholar
  45. 42.
    Xavier MP, García-Fresnadillo D, Moreno-Bondi MC, Orellana G (1998) Anal Chem 70: 5184Google Scholar
  46. 43.
    Stern O, Volmer (1919) Phys Z 20: 183Google Scholar
  47. 44.
    Demas JN (1983) Excited state lifetime measurements. Academic Press, New YorkGoogle Scholar
  48. 45.
    Green NJB, Pimblott SM, Tachiya M (1993) J Phys Chem 97: 196Google Scholar
  49. 46.
    Klafter J, Drake JM (1989) Molecular dynamics in restricted geometries. Wiley, New YorkGoogle Scholar
  50. 47.
    Szmacinski H, Lakowicz JR (1993) Lifetime-based sensing using phase-modulation fluorometry. In: Czarnik AW (ed) ACS Symp Ser 538 Fluorescent chemosensor for ion and molecule recognition. ACS, Washington, p 196Google Scholar
  51. 48.
    Nelly RN, Schulman SG (1988) Proton transfer kinetics of electronically excited acids and bases. In: Schulman SG (ed) Molecular luminescence spectroscopy. Methods and applications, part 2. Wiley-Interscience, New York, p 461Google Scholar
  52. 49.
    Vos JG (1992) Polyhedron 11: 2285Google Scholar
  53. 50.
    Nazeeruddin MK, Kalyanasundaram K (1989) Inorg Chem 28: 4251Google Scholar
  54. 51.
    Marazuela MD, Moreno-Bondi MC, Orellana G (1998) Appl Spectrosc 52: 1314Google Scholar
  55. 52.
    Orellana G, Moreno-Bondi MC (1990) Spanish Patent 2 023 593Google Scholar
  56. 53.
    Grigg R, Jamilaprasadh Norbert WDJ (1992) J Chem Soc, Chem Commun 1300Google Scholar
  57. 54.
    Murtaza Z, Chang Q, Rao G, Lin H, Lakowicz JR (1997) Anal Biochem 247: 216Google Scholar
  58. 55.
    Xu W, Mehlmann J, Rice J, Collins JE, Frasser CL, Demas JN, DeGraff BA, Bassetti M (1999) Proc SPIE-Int Soc Opt Eng 3534: 456Google Scholar
  59. 56.
    Price JM, Xu W, Demas JN, DeGraff BA (1998) Anal Chem 70: 265Google Scholar
  60. 57.
    Chan C-M, Fung C-S, Wong K-Y, Lo W (1998) Analyst 123: 1843Google Scholar
  61. 58.
    Chan C-M, Lo W, Wong K-Y (2000) Biosens Bioelectron 15: 7Google Scholar
  62. 59.
    Ayala D, Navarro F, Bustamante N, Orellana G (2000) Proc Europt(r)ode V. Lyon, France, p 61Google Scholar
  63. 60.
    Malins C, Glever HG, Keyes TE, Vos JG, Dressick WI, MacCraith BD (2000) Sens Actuators B 67: 89Google Scholar
  64. 61.
    Orellana G, García-Fresnadillo D, Moreno-Bondi MC, Xavier Céforo MP (1996) Spanish Patent 2 130 964Google Scholar
  65. 62.
    Lakowicz JR, Castellano FN, Dattelbaum JD, Tolosa L, Rao G, Gryczynski I (1998) Anal Chem 70: 5115Google Scholar
  66. 63.
    (i) Kosch U, Klimant I, Werner T, Wollbeis OS (1998) Anal Chem 70:3892; (ii) Kosch U, Klimant 1, Wollbeis OS (1999) Anal Chem 364: 48Google Scholar
  67. 64.
    Leiner MJP (1991) Anal Chim Acta 255: 209Google Scholar
  68. 65.
    Orellana G, de Dios C, Moreno-Bondi MC, Marazuela MD (1995) Intensity-and lifetime-based luminescence optosening of carbon dioxide. In: Scheggi AV (ed) Chemical, biochemical and environmental fiber sensors VII. vol 2508 SPIE, Bellingham, p 18Google Scholar
  69. 66.
    Marazuela MD, Moreno-Bondi MC, Orellana G (1995) Sens Actuators B 29: 126Google Scholar
  70. 67.
    Xavier MP, Orellana G, Moreno-Bondi MC, Diaz-Puente J (2000) Quim Anal 19: 118Google Scholar
  71. 68.
    Neurauter G, Klimant I, Wolfbeis OS (1999) Anal Chim Acta 382: 67Google Scholar
  72. 69.
    Klimant I (1999) WO Patent 99/06821Google Scholar
  73. 70.
    Von Bültzingslöwen C, McEvoy AK, MacCraith BD, McDonagh C, Klimant I, Wolfbeis OS (2002) Proc Europt(r)ode VI. Manchester, UK, p 103Google Scholar
  74. 71.
    Grattan KTV, Zhang ZY(1994) Fiber optic fluorescence thermometry. In: Lakowicz JR (ed) Topics in fluorescence spectroscopy, vol 4: probe design and chemical sensing. Plenum, New York, p 335Google Scholar
  75. 72.
    Demas JN, DeGraff BA (1992) Proc SPIE-Int Soc Opt Eng 1796: 71Google Scholar
  76. 73.
    Schulze JE (1990) US Patent 4 895 156Google Scholar
  77. 74.
    Klimant I (1997) WO Patent 97/24606Google Scholar
  78. 75.
    Lecomte J-P, Kirsch-DeMesmaeker A, Orellana G (1994) J Phys Chem 98: 5382Google Scholar
  79. 76.
    Bustamante Alvarez N (2001) PhD thesis, Universidad Complutense de MadridGoogle Scholar
  80. 77.
    Weigl BH, Holobar A, Trettnak W, Klimant I, Kraus H, O’Leary P, Wolfbeis OS (1994) J Biotechnol 32: 127Google Scholar
  81. 78.
    Lubbers DW (1992) Advances in Biosensors, vol 2 JAI Press Ltd, p 215Google Scholar
  82. 79.
    Bambot SB, Lakowicz JR, Sipior J, Carter G, Rao G (1995) Optical measurement of bio-process and clinical analytes using lifetime-based phase fluorimetry. In: Rogers KR, Mulchandami A, Zhow W (eds) Biosensor and chemical sensor technology. American Chemical Society, Washington DC, p 99Google Scholar
  83. 80.
    Cooney CG, Towe BC, Eyster CR (2000) Sens Actuators B 69: 183Google Scholar
  84. 81.
    Singer E, Duveneck GL, Ehrat M, Widmer HM (1994) Sens Actuators A 42: 542Google Scholar
  85. 82.
    Bambot SB, Rao G, Romauld M, Carter GM, Sipior JH, Terpetching E, Lakowicz JR (1995) Biosens Bioelectron 10: 643Google Scholar
  86. 83.
    Xavier MP, Orellana G, Moreno-Bondi MC, Díaz-Puente J (2000) Quim Anal 19:118Google Scholar
  87. 84.
    Ni TQ, Melton LA (1993) Appl Spectrosc 47: 773Google Scholar
  88. 85.
    Laws EA (1993) Aquatic pollution. An introductory text. Wiley, New YorkGoogle Scholar
  89. 86.
    Glud RN, Gundersen JK, Ramsing NB (2000) Electrochemical and optical oxygen microsensors for in situ measurements. In: Buffle J, Horvai G (eds) In situ monitoring of aquatic systems. Chemical analysis and speciation. IUPAC Series on Analytical and Physical Chemistry of Environmental Systems, vol 6. Wiley, Chichester, p 19Google Scholar
  90. 87.
    (i) Clark LC (1956) Trans Am Artif Intern Organs 2:41; (ii) Clark LC (1959) US Patent 2 913 386Google Scholar
  91. 88.
    For example, the blood gas analyzers Terumo-Cardiovascular Devices CDI System 2000, Irvine, CA, USA. Roche Diagnostics OPTI, Basel, Switzerland. GE-Marquette ABG System, Milwaukee, WI, USA. Diametrics Medical Paratrend 7, St. Paul, MN, USA. Philips Neotrend Sensor, Best, The Netherlands.Google Scholar
  92. 89.
    Kautsky, H (1939) Trans Faraday Soc 35: 216Google Scholar
  93. 90.
    Parker CA (1968) Photoluminescence of solutions. Elsevier, AmsterdamGoogle Scholar
  94. 91.
    Pfeil A (1971) J Am Chem Soc 93: 5395Google Scholar
  95. 92.
    Winterle JS, Kliger DS, Hammond GS (1976) J Am Chem Soc 98: 3719Google Scholar
  96. 93.
    Lin C-T, Sutin N (1976) J Phys Chem 80: 97Google Scholar
  97. 94.
    Demas JN, Harris EW, McBride RP (1977) J Am Chem Soc 99: 3547Google Scholar
  98. 95.
    Wolfbeis OS (1997) Chemical sensing using indicator dyes. In: Dakin J, Culshaw B (eds) Optical fiber sensors IV: applications, analysis, and future trends. Artech House, Boston, p 53Google Scholar
  99. 96.
    Gottlieb A, Divers S (1991) In vivo applications of fiberoptic chemical sensors. In: Wise DL, Wingard LB (eds) Biosensors with fiberoptics. Humana Press, Clifton, p 325Google Scholar
  100. 97.
    Szmacinski H, Lakowicz JR (1994) Lifetime-based sensing. In: Lakowicz JR (ed) Topics in fluorescence spectroscopy, vol 4: probe design and chemical sensing. Plenum, New York, p 295Google Scholar
  101. 98.
    Trettnak W, Reininger F (1998) Optochemical sensors in water monitoring. In: Colin F, Quevauviller P (eds) Monitoring of water quality: the contribution of advanced technologies. Elsevier, Amsterdam, p 117Google Scholar
  102. 99.
    Demas JN, DeGraff BA, Coleman PB (1999) Anal Chem 71: 793AGoogle Scholar
  103. 100.
    Bergman I (1968) Nature 218: 396Google Scholar
  104. 101.
    Lubbers D, Opitz N (1975) Z Naturforsch C 30: 532Google Scholar
  105. 102.
    Sacksteder LA, Demas JN, DeGraff BA (1993) Anal Chem 65: 3480Google Scholar
  106. 103.
    Draxler S, Lippitsch ME, Klimant I, Kraus H, Wolfbeis OS (1995) J Phys Chem 99: 3162Google Scholar
  107. 104.
    (i) Lo KP, Groger HP, Luo S, Churchill RJ (2001) US Patent 6 207 961; (ii) Singh R (1994) WO Patent 94/10553; (iii) Shulze JE (1991) US Patent 5 012 809; (iv) Kaneko M, Nakamura H (1989) Spanish Patent 2 007 362; (v) Walt DR, Barnard SM (1994) US Patent 5 244 636Google Scholar
  108. 105.
    Bacon JR, Demas JN (1987) Anal Chem 59: 2780Google Scholar
  109. 106.
    Hartmann P, Leiner MJP (1995) Anal Chem 67: 88Google Scholar
  110. 107.
    Mills A, Thomas M (1997) Analyst 122: 63Google Scholar
  111. 108.
    Di Marco G, Lanza M, Campagna S (1995) Adv Mater 7: 468Google Scholar
  112. 109.
    Ishiji T, Kudo K, Kaneko M (1994) Sens Actuators B 22: 205Google Scholar
  113. 110.
    Li X-M, Ruan F-C, Wong K-Y (1993) Analyst 118: 289Google Scholar
  114. 111.
    Meier B, Werner T, Klimant I, Wolfbeis OS (1995) Sens Actuators B 29: 240Google Scholar
  115. 112.
    He H, Fraatz RJ, Leiner MJP, Rehn MM, Tusa JK (1995) Sens Actuators B 29: 246Google Scholar
  116. 113.
    Matsui K, Sasaki K, Takahashi N (1991) Langmuir 7: 2866Google Scholar
  117. 114.
    Carraway ER, Demas JN, DeGraff BA (1991) Langmuir 7: 2991Google Scholar
  118. 115.
    Lee SK, Shin YB, Pyo HB, Park SH (2001) Chem Lett 4: 310Google Scholar
  119. 116.
    Klimant I, Leiner MJP (1992) Proc Europt(r)ode I, Graz, AustriaGoogle Scholar
  120. 117.
    Xu W, McDonough RC, Langsdorf B, Demas JN, DeGraff BA (1994) Anal Chem 66: 4133Google Scholar
  121. 118.
    Kneas KA, Xu W, Demas JN, DeGraff BA (1997) Appl Spectrosc 51: 1346Google Scholar
  122. 119.
    Brandrup J, Immergut EH (1989) Polymer handbook. Wiley, New YorkGoogle Scholar
  123. 120.
    Wolfbeis OS, Leiner MJP, Posch HE (1986) Mikrochim Acta 3: 359Google Scholar
  124. 121.
    Huang X, Kovaleski JM, Wirth MJ (1996) Anal Chem 68: 4119Google Scholar
  125. 122.
    Delgado Alonso J (2000) PhD thesis, Universidad Complutense de MadridGoogle Scholar
  126. 123.
    Chan C-M, Chan M-Y, Zhang M, Lo W, Wong K-Y (1999) Analyst 124: 691Google Scholar
  127. 124.
    Mills A, Thomas MD (1998) Analyst 123: 1135Google Scholar
  128. 125.
    Hartmann P (2000) Anal Chem 72: 2828Google Scholar
  129. 126.
    Roth T (2000) PhD thesis, Eidgenössische Technische Hochschule, ZürichGoogle Scholar
  130. 127.
    Carraway ER, Demas JN, DeGraff BA, Bacon JR (1991) Anal Chem 63: 337Google Scholar
  131. 128.
    MacCraith BD, McDonagh CM, O’Keefe G, Keyes ET, Vos JG, O’Kelly B, McGilp JF (1993) Analyst 118: 385Google Scholar
  132. 129.
    McEvoy AK, McDonagh CM, MacCraith BD (1996) Analyst 121: 785Google Scholar
  133. 130.
    McEvoy AK, McDonagh C, MacCraith BD (1997) 1 Sol-Gel Sci Technol 8: 1121Google Scholar
  134. 131.
    McDonagh C, MacCraith BD, McEvoy AK (1998) Anal Chem 70: 45Google Scholar
  135. 132.
    McMurray HN, Douglas P, Busa C, Garley MS (1994) J Photochem Photobiol A 80: 283Google Scholar
  136. 133.
    Klimant I, Belser P, Wolfbeis OS (1994) Talanta 41: 985Google Scholar
  137. 134.
    Alcala JR (1994) Real-time chemical sensing employing luminescence techniques. In: Lakowicz JR (ed) Topics in fluorescence spectroscopy, vol 4: probe design and chemical sensing. Plenum, New York, p 255Google Scholar
  138. 135.
    Carraway ER, Demas JN, DeGraff BA (1991) Anal Chem 63: 332Google Scholar
  139. 136.
    Demas JN, DeGraff BA, Xu W (1995) Anal Chem 67: 1377Google Scholar
  140. 137.
    Hartmann P, Leiner MJP, Lippitsch ME (1995) Sens Actuators B 29: 251Google Scholar
  141. 138.
    Choi MMF, Xiao D (2000) Anal Chim Acta 403: 57Google Scholar
  142. 139.
    Bossi ML, Daraio ME, Aramendfa PF (1999) J Photochem Photobiol A 120: 15Google Scholar
  143. 140.
    Draxler S, Lippitsch ME (1996) Anal Chem 68: 753Google Scholar
  144. 141.
    Choi MMF, Xiao D (1999) Analyst 124: 695Google Scholar
  145. 142.
    Moreno-Bondi MC, Wolfbeis OS, Leiner MJP, Schaffar BPH (1990) Anal Chem 62: 2377Google Scholar
  146. 143.
    Chuang H, Arnold MA (1998) Anal Chim Acta 368: 83Google Scholar
  147. 144.
    Wolfbeis OS, Carlini FM (1984) Anal Chim Acta 160: 301Google Scholar
  148. 145.
    Wolfbeis OS, Leiner MJP (1988) Proc SPIE-Int Soc Opt Eng 906: 42Google Scholar
  149. 146.
    Lippitsch ME, Pusterhofer J, Leiner MJP, Wolfbeis OS (1988) Anal Chim Acta 205: 1Google Scholar
  150. 147.
    Lippistsch ME, Draxler S, Kieslinger D (1997) Sens Actuators B 38–39: 96Google Scholar
  151. 148.
    Hauser PC, Tan SSS (1993) Analyst 118: 991Google Scholar
  152. 149.
    Gruber WR, Klimant I, Wolfbeis OS (1993) Proc SPIE-Int Soc Opt Eng 1885: 448Google Scholar
  153. 150.
    Trettnak W, Gruber W, Reininger F, Klimant I (1995) Sens Actuators B 29: 219Google Scholar
  154. 151.
    Kieslinger D, Draxler S, Trznadel K, Lippitsch ME (1997) Sens Actuators B 38–39: 300Google Scholar
  155. 152.
    Weigl BH, Wolfbeis OS (1994) Anal Chem 66: 3323Google Scholar
  156. 153.
    Wolfbeis OS, Weis LJ, Leiner MJP, Ziegler WE (1988) Anal Chem 60: 2028Google Scholar
  157. 154.
    Weigl BH, Holobar A, Trettnak W, Klimant I, Kraus H, O’Leary P, Wolfbeis OS (1994) J Biotech 32: 127Google Scholar
  158. 155.
    McDonagh C, Kolle C, McEvoy AK, Dowling DL, Cafolla AA, Cullen SJ, MacCraith BD (2001) Sens Actuators B 74: 124Google Scholar
  159. 156.
    Goswami K, Klainer SM (1988) Proc SPIE-Int Soc Opt Eng 990: 111Google Scholar
  160. 157.
    Wolfbeis OS, Klimant I, Werner T, Huber C, Kosch U, Krause C, Neurauter G, Dürkop A (1998) Sens Actuators B 51: 17Google Scholar
  161. 158.
    Holst GA, Köster T, Voges E, Lubbers DW (1995) Sens Actuators B 29: 231Google Scholar
  162. 159.
    Gouin JF, Baros F, Birot D, André JC (1997) Sens Actuators B 38–39: 401Google Scholar
  163. 160.
    Voraberger HS, Kreimaier H, Biebernik K, Kern W (2001) Sens Actuators B 74: 179Google Scholar
  164. 161.
    Navarro-Villoslada F, Orellana G, Moreno-Bondi MC, Vick T, Driver M, Hildebrand G, Kiefeith K (2001) Anal Chem 73: 5150Google Scholar
  165. 162.
    Holst G, Glud RN, Kühl M, Kimant I (1997) Sens Actuators B 38–39: 122Google Scholar
  166. 163.
    Rosenzweig Z, Kopelman R (1995) Anal Chem 67: 2650Google Scholar
  167. 164.
    Kohls O, Scheper Th (2000) Sens Actuators B 70: 121Google Scholar
  168. 165.
    Hartmann P, Ziegler W (1996) Anal Chem 68: 4512Google Scholar
  169. 166.
    Klimant I, Kühl M, Glud RN, Holst G (1997) Sens Actuators B 38–39: 29Google Scholar
  170. 167.
    Xu H, Aylott JW, Kopelman R, Miller TJ, Philbert MA (2001) Anal Chem 73: 4124Google Scholar
  171. 168.
    Ferguson JA, Healey BG, Bronk KS, Barnard SM Walt DR (1996) Anal Chim Acta 340: 123Google Scholar
  172. 169.
    (i) Bedoya M, Delgado J, García-Ares E, García-Alonso JL, Orellana G, Moreno-Bondi MC (2000) Proc Europt(r)ode V. Lyon, France, p 221; (ii) Orellana G, Moreno-Bondi MC, Bedoya M, Bustamante N, Delgado J, García E, García-Alonso JL (2001) Proc 1st SENSPOL Workshop: Sensing Technologies for Contaminated Sites and Groundwater. Alcald de Henares, Spain, p 213; (iii) Orellana G, Moreno-Bondi MC (2002) Proc 15th Optical Fiber Sensors Conference. Portland, OR, p 115Google Scholar
  173. 170.
    Jeong Cho E, Bright FV (2001) Anal Chem 73: 3289Google Scholar
  174. 171.
    Wolfbeis OS, Posch HE (1988) Fresenius Z Anal Chem 332: 255Google Scholar
  175. 172.
    Marazuela MD, Cuesta B, Moreno-Bondi MC, Quejido A (1997) Biosens Bioelectron 12: 233Google Scholar
  176. 173.
    Marazuela MD, Moreno-Bondi MC (1998) Anal Chim Acta 374: 19Google Scholar
  177. 174.
    Wu X, Choi MMF, Xiao D (2000) Analyst 125: 157Google Scholar
  178. 175.
    Preininger C, Klimant I, Wolfbeis OS (1994) Anal Chem 66: 1841Google Scholar
  179. 176.
    Moreno-Bondi MC, Díez-Barrio MT, Orellana G, Bedoya M (2002) Proc Europt(r)ode VI. Manchester, UK, p 37Google Scholar
  180. 177.
    Bedoya M (2002) PhD thesis, Universidad Complutense de MadridGoogle Scholar
  181. 178.
    Huber C, Werner T, Krause C, Klimant I, Wolfbeis OS (1998) Anal Chim Acta 364: 143Google Scholar
  182. 179.
    Werner T, Klimant I, Huber C, Krause C, Wolfbeis OS (1999) Mikrochim Acta 131: 25Google Scholar
  183. 180.
    Krause C, Werner T, Huber C, Klimant I, Wolfbeis OS (1998) Anal Chem 70: 3983Google Scholar
  184. 181.
    Huber C, Klimant I, Krause C, Werner T, Mayr T, Wolfbeis OS (2000) Fresenius J Anal Chem 368: 196Google Scholar
  185. 182.
    Delgado J, Orellana G (2002) Proc Europt(r)ode VI. Manchester, UK, p 115Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Guillermo Orellana
  • David García-Fresnadillo

There are no affiliations available

Personalised recommendations