Interferometric Biosensors for Environmental Pollution Detection

  • L. M. Lechuga
  • F. Prieto
  • B. Sepúlveda
Part of the Springer Series on Chemical Sensors and Biosensors book series (SSSENSORS, volume 1)


One important step in the development of biosensors is the design and fabrication of a highly sensitive physical transducer, that is, a device capable of transforming efficiently a chemical or biological reaction into a measurable signal. There are several physical methods to obtain this transducing signal such as those based on amperometric, potentiometric or acoustic systems. However, transducers that make use of optical principles offer more attractive characteristics such as immunity to electromagnetic interference, possible use in aggressive environments and, in general, a higher sensitivity.


Optical Waveguide Transverse Electric Effective Refractive Index Evanescent Field Core Thickness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Raether H, (1977) Surface Plasmon oscillations and their applications, in Physics of Thin Films, vol 9, Academic Press, Florida, pp 145–262Google Scholar
  2. 2.
    Lechuga LM, Calle A, Prieto F (2000) Optical sensors based on evanescent field sensing. Part 1: Surface plasmon resonance sensors. Quim Anal 19: 7–13Google Scholar
  3. 3.
  4. 4.
    Melendez J, Carr R, Bartholomew DU, Kukanskis K, Elkind J, Yee S, Furlong C, Woodbury R (1996) A commercial solution for surface plasmon sensing. Sens Actuators B3536: 212–216Google Scholar
  5. 5. Scholar
  6. 6.
  7. 7.
    Tiefenthaler K, Lukosz W (1989) Sensitivity of grating couplers as integrated-optical chemical sensors. J Opt Soc Am B6: 209–220CrossRefGoogle Scholar
  8. 8.
  9. 9.
    Cush R, Cronin JM, Stewart WJ, Maule CH, Molloy J, Goddard NJ (1993) The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions. Part I: principle of operation and associated instrumentation. Biosen Bioelectron 8: 347–353CrossRefGoogle Scholar
  10. 10.
  11. 11.
    Giallorenzi TG, Bucaro JA, Dandridge A, Siegel GH, Cole JH, Rashleigh SC, Priest RG (1982) Optical Fiber Sensor Technology. IEEE J Quant Electron 18: 626–665CrossRefGoogle Scholar
  12. 12.
    Marcuse D (1974) Theory of dielectric optical waveguides. Academic Press, New YorkGoogle Scholar
  13. 13.
    Tamir T (1988) Guided-wave optoelectronics. Springer, BerlinCrossRefGoogle Scholar
  14. 14.
    Duguay MA, Kokubun Y, Koch TL (1986) Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures. Appl Phys Lett 49: 13–15CrossRefGoogle Scholar
  15. 15.
    Born M, Wolf E (1993) Principles of optics. Pergamon Press, OxfordGoogle Scholar
  16. 16.
    Mawst LJ, Yang H, Nesnidal M, Al-Muhanna A, Botez D, Vang TA, Alvarez FI), Johnson R (1998) High power single mode Al free InGaAs(P)/InGaP/GaAs distributed feedback diode lasers. J Crystal Growth 195: 609–616CrossRefGoogle Scholar
  17. 17.
    Kokubun Y, Asokawa A (1993) ARROW-type polarizer utilizing form birefringence in multilayer first cladding. IEEE Photon Technol Lett 5: 1418–1420CrossRefGoogle Scholar
  18. 18.
    Sato S, Pan W, Chen ST, Endo S, Suzuki S, Kokubun Y (1999) 59-nm trimming of centre wavelength of ARROW-type vertical coupler filter by UV irradiation. IEEE Photon Technol Lett 11: 358–360Google Scholar
  19. 19.
    Yamada Y, Sugito A, Moriwaki K, Ogawa I, Hashimoto T (1994) An application of a silica-on-terraced-silicon platform to hybrid Mach-Zehnder interferometric circuits consisting of silica waveguides and LiNbO3 phase-shifter. IEEE Photon Technol Lett 6: 822824Google Scholar
  20. 20.
    Nathan A, Bhatnagar YK, Benaissa K, Huang W (1995) Micromechanical Mach-Zehnder interferometer compatible with silicon integrated circuit and micromachined technologies. Sens Mater 7: 105–109Google Scholar
  21. 21.
    Garcés I, Villuendas F, Subías J, Alonso J, del Valle M, Dominguez C, Bartolomé E (1997) Bidimensional planar micro-optics for optochemical absorbance sensing. Opt Lett 23: 223–227Google Scholar
  22. 22.
    Prieto F, Lechuga LM, Calle A, Llobera A, Dominguez C (2001) Optimised silicon antiresonant reflecting optical waveguides for sensing applications. J Lightwave Technol, EneroGoogle Scholar
  23. 23.
    Tiefenthaler K, Lukosz W (1989) Sensitivity of grating couplers as integrated-optical chemical sensors. J Opt Soc Am B 6: 209–220CrossRefGoogle Scholar
  24. 24.
    Parriaux O, Veldhuis GJ (1998) Normalized analysis for the sensitivity optimization of integrated optical evanescent-wave sensors. J Lightwave Technol 16: 573–582CrossRefGoogle Scholar
  25. 25.
    Shipper EF, Brugman AM, Dominguez C, Lechuga LM, Kooyman RPH, Greve J (1997) The realisation of an integrated Mach-Zehnder waveguide immunosensor in silicon technology. Sens Actuators B 40: 147–153CrossRefGoogle Scholar
  26. 26.
    Prieto F, Llobera A, Jiménez D, Dominguez C, Calle A, Lechuga LM (2000) Design and Analysis of Silicon Antiresonant Reflecting Optical Waveguides for Evanescent Field Sensors. J Lightwave Technol 18: 966–972CrossRefGoogle Scholar
  27. 27.
    Muhammad FA, Stewart G, Jin W (1993) Sensitivity enhancement of D-fibre methane gas sensor using high-index overlay. Proc Inst Electr Eng Part J 140: 115–118Google Scholar
  28. 28.
    Quigley GR, Harris RD, Wilkinson JS (1999) Sensitivity enhancement of integrated optical sensors by use of thin high-index films. Appl Optics 38: 6036–6039CrossRefGoogle Scholar
  29. 29.
    Campbell DP, McCloskey CJ (2002) Interferometric Biosensors. In: Optical Biosensors: present and future. Ch. 9, 277–304. Ed. Ligler FS, Taitt AR. Elsevier Science BV. ISBN: 0444–50974–7Google Scholar
  30. 30.
    Kooyman RPH, Lechuga LM (1997) Immunosensors based on Total Internal Reflectance“. Ch 8, 169–196. In „Handbook of Biosensors: Medicine, Food and the Environment”, Ed. Kress-Rogers, E. CRC Press, Boca Raton, FloridaGoogle Scholar
  31. 31.
    Schipper E (1996) Waveguide immunosensing of small molecules. Thesis, University of TwenteGoogle Scholar
  32. 32.
    Lechuga LM, Lenferink ATM, Kooyman RPH, Greve J (1995) Feasibility of evanescent wave interferometer immunosensors for direct detection of pesticides: Chemical aspects. Sens Actuators B 24: 762–765Google Scholar
  33. 33.
    Heideman RG, Kooyman RPH, Greve J (1993) Biosens: Performance of a highly sensitive optical waveguide Mach-Zehnder biosensor. Sens Actuators B 10: 209–217Google Scholar
  34. 34.
    Scheneider BH, Dickinson EL, Vach MD, Hoijer JV, Howard LV (2000) Highly sensitive optical chip immunoassays in human serum. Biosens Bioelec 15: 13–22CrossRefGoogle Scholar
  35. 35.
    Campbell DP, Gottfried DS, Roberts DW, Caspall JJ (2002) Proc. Europtrode VI (Sixth European Conference on Optical Chemical Sensors and Biosensors). P. 327. UMIST, Manchester, AprilGoogle Scholar
  36. 36.
    Shirshov Y, Snopok BA, Samoylov AV, Kiyanovskij AP, Venger EF, Nabok AV, Ray AK (2001) Analysis of the response of planar polarisation interferometer to molecular layer formation: fibrinogen adsorption on silicon nitride surface. Biosens Bioelec 16: 381390Google Scholar
  37. 37.
    Ayräst P, Honkanent S, Gracet KM, Shrouf K, Katila P, Leppihalme M, Tervonen A, Yang X, Swanson B, Peyghambariam N (1998) Thin-film chemical sensors with waveguide Zeeman interferometry. Pure Appl Opt 1261–1271Google Scholar
  38. 38.
    Konz W, Brandenburg A, Edelhäuser R, Ott W, Wölfelshneider H (1989) A refractometer with fully packaged integrated optical sensor head, in: Arditty HJ, Dakin JP, Kersten RTh Optical fiber sensors. Springer Verlag, Berlin, pp 443–447Google Scholar
  39. 39.
    Luff BJ, Wilkinson JS, Piehler J, Hollenbach U, Ingenhoff J, Fabricius N (1998) Integrated optical Mach-Zehnder biosensor. J Lightwave Technol 16: 583–592CrossRefGoogle Scholar
  40. 40.
    Ikkink TJ (1998) Interferometric interrogation concepts for integrated electro-optical sensor systems, Thesis, University of TwenteGoogle Scholar
  41. 41.
    Johnson GW, Leiner DC, Moore DT (1977) Phase-locked interferometry. Proc SPIE vol 126, pp 152–160CrossRefGoogle Scholar
  42. 42.
    Sepúlveda B, Prieto F, Calle A, Llobera A, Dominguez C, Lechuga LM (2002) Integrated Optical Interferometric Biosensors based on Microelectronics Technology for Immunosensing. Proc Biosensors 2002, Kyoto, Japan, May 2002Google Scholar
  43. 43.
    Weisser M, Tovar G, Mittler S, Knoll W, Brosinger F, Freimuth H, Lacher M, Ehrfeld W (1999) Specific bio-recognition reactions observed with an integrated Mach-Zehnder interferometer. Biosens Bioelec 14: 405–411CrossRefGoogle Scholar
  44. 44.
    Brosinger F, Freimuth H, Lacher M, Ehrfeld W, Gedig E, Katerkamp A, Spener F, Cam-mann K (1997) A label-free affinity sensor with compensation of unspecific protein interaction by a highly sensitive integrated optical Mach-Zehnder interferometer on silicon. Sens Actuators B 44: 350–355CrossRefGoogle Scholar
  45. 45.
    Busse S, Scheumann V, Menges B, Mittler S (2002) Sensitivity studies for specific binding reactions using the biotin/streptavidin system by evanescent optical methods. Bio-sens Bioelec 17: 704–710CrossRefGoogle Scholar
  46. 46.
    Busse S,DePaoli M,Wenz G, Mittler S (2001) An integrated optical Mach-Zehnder interferometer functionalised by ß-cyclodextrin to monitor binding reaction. Sens Actuators B 80: 116–124CrossRefGoogle Scholar
  47. 47.
    Kunz RE (1999) Integrated optics in sensors: advances toward miniaturised systems for chemical and biochemical sensing. In Integrated Optical Circuits and components: design and applications, Ed. Murphy EJ. Marcel Dekker, Inc, New York. ISBN: 0–82477577–5Google Scholar
  48. 48.
    Heideman RG, Lambeck PV (1999) Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach-Zehnder interferometer system“. Sens Actuators B 61: 100–127CrossRefGoogle Scholar
  49. 49.
    Brandenburg A, Krauter R, Künzel C, Stefan M, Schulte H (2000) Interferometric sensor for detection of surface-bound bioreactions. Applied Optics 39: 6396–6405CrossRefGoogle Scholar
  50. 50.
    Brynda E, Houska M, Brandenburg A, Wikerstal A (2002) Optical biosensors for real-time measurement of analytes in blood plasma. Biosens Bioelec 17: 665–675CrossRefGoogle Scholar
  51. 51.
    Shipper EF, Bergevoet AJH, Kooyman RPH, Greve J (1997) New detection method for atrazine pesticides with the optical waveguide Mach-Zehnder immunosensor. Anal Chim Acta 341: 171–176CrossRefGoogle Scholar
  52. 52.
    Drapp B, Piehler J, Brecht A, Gauglitz G, Luff BJ, Wilkinson JS, Ingenhoff J (1997) Integrated optical Mach-Zehnder interferometers as simazine immunoprobes. Sens Actuators B 38–39: 277–282CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • L. M. Lechuga
  • F. Prieto
  • B. Sepúlveda

There are no affiliations available

Personalised recommendations