The Mars Atmospheric Constellation Observatory (MACO) Concept

  • E. R. Kursinski
  • W. Folkner
  • C. Zuffada
  • C. Walker
  • D. Hinson
  • A. Ingersoll
  • M. A. Gurwell
  • J. T. Schofield
  • S. Limaye
  • A. Stern
  • D. Flittner
  • G. Hajj
  • J. Joiner
  • H. Pickett
  • L. Romans
  • A. P. Showman
  • A. Sprague
  • C. Young
  • S. Calcutt
  • F. Forget
  • F. Taylor
Chapter

Abstract

The Mars Atmospheric Constellation Observatory (MACO) represents an innovative approach to characterizing the present Martian climate from the surface into the thermosphere including the hydrological, CO2, and dust cycles together with the energy and momentum budgets. The mission concept is based on a constellation of satellites forming counter-rotating pairs for observing satellite-to-satellite microwave occultations to determine vertical profiles of water vapor, CO2, temperature, pressure, and wind. Satellite radio occultation, used in previous missions such as Mars Global Surveyor (MGS), provides precision, accuracy and vertical resolution typically 1 and sometimes 2 orders of magnitude beyond that of passive radiometers. Furthermore it can measure absolute pressure versus height (which is unobservable by radiometers) and thus remotely determine seasonal CO2 changes and winds. The microwave observations are supplemented by IR observations by a Dust and Ice Sensor (DIS). With the addition of a UV spectrometer, MACO can characterize the upper atmosphere’s composition and thermodynamic structure as well as escape rates. With a three satellite constellation, MACO will sample the Martian atmosphere with more than 80 occultations each day and, with observations from rapidly precessing orbits over at least one Martian year, will characterize the diurnal and seasonal cycles.

Keywords

Dust Microwave Convection Fractionation Boulder 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Clancy T et al. (1996) Water Vapor Saturation at Low Altitudes around Mars Apehelion: A Key to Mars Climate?. Icarus 122: 36–62CrossRefGoogle Scholar
  2. COMPLEX (2001) The National Research Council ( NRC) Committee for Planetary Exploration Report, Assessment of Mars Science and Mission Priorities, http://www.nationalacademies.org/ssb/marsafront.html
  3. Hinson DP, Simpson RA, Twicken JD, Tyler GL, Flasar FM (1999) Initial results from radio occultation measurements with Mars Global Surveyor. J Geophys Res 104: 26997–27012CrossRefGoogle Scholar
  4. Hinson DP, Tyler GL, Hollingsworth JL, Wilson RJ (2001) Radio occultation measurements of forced atmospheric waves on Mars. J Geophys Res 106: 1463–1480CrossRefGoogle Scholar
  5. Jakosky BM, Mellon MT, Kieffer HH, Christensen PR, Varnes ES, Lee SW (2000) The thermal inertia of Mars from the Mars Global Surveyor Thermal Emission Spectrometer. J Geophys Res 105: 9643–9652CrossRefGoogle Scholar
  6. Kursinski ER, Hajj GA, Schofield JT, Linfield RP, Hardy KR (1997) Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System. J Geophys Res 102: 23429–23465CrossRefGoogle Scholar
  7. Kursinski et al. (2002) A Microwave Occultation Observing System Optimized to Characterize Atmospheric Water, Temperature, and Geopotential via Absorption. J Atmos Oceanic Tech 19: 1897–1914CrossRefGoogle Scholar
  8. McCleese D, Greeley R, MacPherson G (Chairs) (2001) Science Planning for Exploring Mars, JPL Publication 01 - 7, http://mars.jpl.nana.gov/tech/sciencestrategy.pdf
  9. Pearl JC, Smith MD, Conrath BJ, Bandfield JL, Christensen PR (2001) Observations of Martian ice clouds by the Mars Global Surveyor Thermal Emission Spectrometer: The First Martian year. J Geophys Res — Planet 106: 12325–12338CrossRefGoogle Scholar
  10. Peixoto JP, Oort AH (1992) Physics of Climate. Am Inst of Phys, New YorkGoogle Scholar
  11. Richardson MI, Wilson RI (2002) A topographically forced asymmetry in the martian circulation and climate. Nature 416: 298–301CrossRefGoogle Scholar
  12. Slater DC, Stern AS, Booker T, Scherrer J, A’Hearn MF, Bertaux JL, Feldman PD, Festou MC, Siegmund OH (2001) In: Siegmund OH, Fineschi S, Gummin MA (eds) UV/EUV and Visible Space Instrumentation for Astronomy and Solar Physics. Proc SPIE 4498: 239Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • E. R. Kursinski
    • 1
  • W. Folkner
    • 2
  • C. Zuffada
    • 2
  • C. Walker
    • 3
  • D. Hinson
    • 4
  • A. Ingersoll
    • 5
  • M. A. Gurwell
    • 6
  • J. T. Schofield
    • 2
  • S. Limaye
    • 7
  • A. Stern
    • 8
  • D. Flittner
    • 1
  • G. Hajj
    • 2
  • J. Joiner
    • 9
  • H. Pickett
    • 2
  • L. Romans
    • 2
  • A. P. Showman
    • 10
  • A. Sprague
    • 10
  • C. Young
    • 1
  • S. Calcutt
    • 11
  • F. Forget
    • 12
  • F. Taylor
    • 11
  1. 1.Department of Atmospheric SciencesUniversity of ArizonaTucsonUSA
  2. 2.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  3. 3.Department of AstronomyUniversity of ArizonaTucsonUSA
  4. 4.Department of Electrical EngineeringStanford UniversityPalo AltoUSA
  5. 5.Department of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaUSA
  6. 6.Harvard-Smithsonian Center for AstrophysicsCambridgeUSA
  7. 7.University of WisconsinMadisonUSA
  8. 8.Southwest Research InstituteBoulderUSA
  9. 9.Goddard Space Flight CenterGreenbeltUSA
  10. 10.Department of Planetary SciencesUniversity of ArizonaTucsonUSA
  11. 11.Department of Physics Atmospheric, Oceanic and Planetary PhysicsUniversity of OxfordUK
  12. 12.Lab. de Meteorologie DynamiqueUniversite ParisFrance

Personalised recommendations