Skip to main content

Water Vapor Profiling Using Absorptive Occultation Measurements: A Comparison between SAGE III and ATOMS

  • Chapter
Occultations for Probing Atmosphere and Climate
  • 386 Accesses

Abstract

A simple side by side comparison of the water vapor retrieval methods and simulated results for two different absorptive occultation instruments is presented: the latest Stratospheric Aerosol and Gas Experiment instrument (SAGE III), a currently operational solar occultation instrument, and the Active Tropospheric Ozone and Moisture Sounder (ATOMS), a proposed active microwave occultation system. The ATOMS system is shown to have several potential advantages over SAGE III for monitoring atmospheric water vapor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Chiou EW, McCormick MP, Chu WP (1997) Global water vapor distributions in the stratosphere and upper troposphere from 5.5 years of SAGE II observations. J Geophys Res 102: 19105–19118

    Article  Google Scholar 

  • Chu WP, Trepte C, Thomason L, Zawodny J (2002) The solar occultation technique: A review and first results from METEOR/SAGE III (Abstract). In: Programme Book. 1st International Workshop on Occultations for Probing Atmosphere and Climate, p 15

    Google Scholar 

  • Feng D, Syndergaard S, Herman B, Kursinski E, Yunck T, Romberg F (2001) Deriving atmospheric water vapor and ozone profiles from active microwave occultation measurements. In: Fujisada H, Lurie J, Ropertz A, Weber K (eds) Sensors, Systems, and Next-Generation Satellites IV. Vol 4169 of SPIE Proceedings Series, pp 299–308

    Google Scholar 

  • Fussen D, Bingen C (1999) A volcanism dependent model for extinction profile of stratospheric aerosols in the UV-visible range. Geophys Res Lett 26: 703–706

    Article  Google Scholar 

  • Harries JE (1996) The greenhouse Earth: A view from space. Q J R Meteorol Soc 122: 799818

    Google Scholar 

  • Intergovernmental Panel on Climate Change, Climate Change 1995: The Science of Climate Change ( 1995 ). Cambridge University Press, Cambridge

    Google Scholar 

  • Justus CG, Jeffries WR, Yung SP, Johnson DL (1995) The NASA/MSFC Global Reference Atmosphere Model. NASA TM 4715

    Google Scholar 

  • Kursinski ER, Syndergaard S, Flittner D, Feng D, Hajj G, Herman B, Ward D, Yunck T (2002) A microwave occultation observing system optimized to characterize atmospheric water, temperature and geopotential via absorption. Accepted for publication in J Atmos and Oceanic Tech

    Google Scholar 

  • Liebe HJ (1989) MPM -An atmospheric millimeter-wave propagation model. Int J Infrared Millimeter Waves 10: 631–650

    Article  Google Scholar 

  • Manabe S, Wetherald (1967) Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J Atmos Sci 24: 241–259

    Google Scholar 

  • Read WG, Waters J, Wu D, Stone E, Shippony Z, Smedley A, Smallcomb C, Oltmans S, Kley D, Smit H, Mergenthaler J, Karki M (2001) UARS microwave limb sounder upper tropospheric humidity measurement: Method and validation. J Geophys Res 106: 32207–32258

    Google Scholar 

  • Rind D (1998) Just add water. Science 281: 1152–1153

    Google Scholar 

  • SAGE III Algorithm Theoretical Basis Document (ATBD) Transmission Level 1B Products (2000). NASA Langley Research Center 475–00–108, version 2. Available at http://eospso.gsfc.nasa.gov/atbds/sagetables.html

  • SAGE III Algorithm Theoretical Basis Document (ATBD) Solar and Lunar Algorithm (2000). NASA Langley Research Center 475–00–109, version 2. Available at http://eospso.gsfc.nasa.gov/atbds/sagetables.html

  • Shine KP, Sinha A (1991) Sensitivity of the Earth’s climate to height dependent changes in the water vapor mixing ratio. Nature 354: 382–384

    Article  Google Scholar 

  • Ware R, Exner M, Feng D, Gorbunov M, Hardy K, Herman B, Kuo Y, Meehan T, Melbourne W, Rocken C, Schreiner W, Sokolovskiy S, Solheim F, Zou X, Anthes R, Businger S, Trenberth K (1996) GPS sounding of the atmosphere from low Earth orbit: Preliminary results. Bull Am Meteorol Soc 77: 19–40

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ward, D.M. (2004). Water Vapor Profiling Using Absorptive Occultation Measurements: A Comparison between SAGE III and ATOMS. In: Kirchengast, G., Foelsche, U., Steiner, A.K. (eds) Occultations for Probing Atmosphere and Climate. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09041-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09041-1_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-06108-0

  • Online ISBN: 978-3-662-09041-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics