Advertisement

Verfahren zur Nullstellenbestimmung. Minimierungsmethoden

  • Josef Stoer
Part of the Springer-Lehrbuch book series (SLB)

Zusammenfassung

Ein wichtiges Problem ist die Bestimmung der Nullstellen ? einer gegebenen Funktion f:f(ξ) = 0. Man denke dabei nicht nur an das klassische Problem, die Nullstellen (Wurzeln) eines Polynoms
$$p(x) = {a_0}{x^n} + {a_1}{x^{n - 1}} + \cdot \cdot \cdot {a_n}$$
zu finden. Je nach Definition der Funktion f: E → F und der Mengen E und F kann man sehr allgemeine Probleme als Nullstellenprobleme auffassen. Z.B. wird für E = F = n die Funktion / durch n reelle Funktionen f i(x1, ..., xn) von n reellen Variablen x 1, ..., x n beschrieben:9 Open image in new window .

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur zu Kapitel 5

  1. Baptist, P., Stoer, J. (1977): On the relation between quadratic termination and convergence properties of minimization algorithms. Part II. Applications. Numer. Math.28, 367–391.MathSciNetzbMATHCrossRefGoogle Scholar
  2. Bauer, F.L. (1956): Beiträge zur Entwicklung numerischer Verfahren für programmgesteuerte Rechenalagen. II. Direkte Faktorisierung eines Polynoms. Bayer. Akad. Wiss. Math. Natur. Kl. S.B. 163–203.Google Scholar
  3. Brent, R.P. (1973): Algorithms for Minimization without Derivatives. Englewood Cliffs, N.J.: Prentice-Hall.zbMATHGoogle Scholar
  4. Broyden, C.G. (1965): A class of methods for solving nonlinear simultaneous equations. Math. Comput.19, 577–593.MathSciNetzbMATHCrossRefGoogle Scholar
  5. Broyden, C.G. (1967): Quasi-Newton-methods and their application to function minimization. Math. Comput.21, 368–381.MathSciNetzbMATHCrossRefGoogle Scholar
  6. Broyden, C.G. (1970): The convergence of a class of double rank minimization algorithms. 2. The new algorithm. J. Inst. Math. Appl.6, 222–231.MathSciNetzbMATHCrossRefGoogle Scholar
  7. Broyden, C.G., Dennis, J.E., Moré, J.J. (1970): On the local and superlinear convergence of quasi-Newton methods. J. Inst. Math. Appl.12, 223–245.CrossRefGoogle Scholar
  8. Collatz, L. (1968): Funktionalanalysis und numerische Mathematik. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen. Bd. 120. Berlin-Heidelberg-New York: Springer.Google Scholar
  9. Collatz, L., Wetterling, W. (1971): Optimierungsaufgaben. Berlin-Heidelberg-New York: Springer.zbMATHCrossRefGoogle Scholar
  10. Davidon, W.C (1959): Variable metric methods for minimization. Argonne National Laboratory Report ANL-5990.CrossRefGoogle Scholar
  11. Davidon, W.C (1975): Optimally conditioned optimization algorithms without line searches. Math. Programming,9 1–30.MathSciNetzbMATHCrossRefGoogle Scholar
  12. Dixon, L.C.W. (1971): The choice of step length, a crucial factor in the performance of variable metric algorithms. In: Numerical Methods for Nonlinear Optimization. F.A. Lootsma, ed., 149–170. New York: Academic Press.Google Scholar
  13. Fletcher, R., Powell, M.J.D. (1963): A rapidly convergent descent method for minimization. Comput. J.6, 163–168.MathSciNetzbMATHCrossRefGoogle Scholar
  14. Fletcher, R. (1980): Unconstrained Optimization. New York: Wiley.zbMATHGoogle Scholar
  15. Fletcher, R. (1981): Constrained Optimization. New York: Wiley.zbMATHGoogle Scholar
  16. Gill, P.E., Golub, G.H., Murray, W., Saunders, M.A. (1974): Methods for modifying matrix factorizations. Math. Comput.28, 505–535.MathSciNetzbMATHCrossRefGoogle Scholar
  17. Henrici, P. (1974): Applied and Computional Complex Analysis. Vol. 1. New York: Wiley.Google Scholar
  18. Himmelblau, D.M. (1972): Applied Nonlinear Programming. New York: McGraw-Hill.zbMATHGoogle Scholar
  19. Householder, A.S. (1970): The Numerical Treatment of a Single Non-linear Equation. New York: McGraw-Hill.Google Scholar
  20. Jenkins, M.A., Traub, J.F. (1970): A three-stage variable-shift iteration for polynomial zeros and its relation to generalized Rayleigh iteration. Numer. Math.14, 252–263.MathSciNetzbMATHCrossRefGoogle Scholar
  21. Luenberger, D.G. (1973): Introduction to Linear and Nonlinear Programming. Reading, Mass.: Addison-Wesley.zbMATHGoogle Scholar
  22. Maehly, H. (1954): Zur iterativen Auflösung algebraischer Gleichungen. Z. Angew. Math. Physik,5 260–263.MathSciNetzbMATHCrossRefGoogle Scholar
  23. Marden, M. (1966): Geometry of Polynomials. Providence, R.I.: Amer. Math. Soc.zbMATHGoogle Scholar
  24. Nickel, K. (1966): Die numerische Berechnung der Wurzeln eines Polynoms. Numer. Math.9, 80–98.MathSciNetzbMATHCrossRefGoogle Scholar
  25. Oren, S.S., Luenberger, D.G. (1974): Self-scaling variable metric (SSVM) algorithms. I. Criteria and sufficient conditions for scaling a class of algorithms. Manage. Sci.20, 845–862.MathSciNetzbMATHCrossRefGoogle Scholar
  26. Oren, S.S., Spedicato, E. (1974): Optimal conditioning of self-scaling variable metric algortihms. Stanford University Dept. of Engineering, Economic Systems Report ARG-MR 74–5.Google Scholar
  27. Ortega, J.M., Rheinboldt, W.C. (1970): Iterative Solution of Non-linear Equations in Several Variables. New York: Academic Press.Google Scholar
  28. Ostrowski, A.M. (1973): Solution of Equations in Euclidean and Banach Spaces. New York: Academic Press.zbMATHGoogle Scholar
  29. Peters, G., Wilkinson, J.H. (1969): Eigenvalues of Ax = λBx with band symmetric A and B. Comput. J.12, 398–404.MathSciNetzbMATHCrossRefGoogle Scholar
  30. Peters, G., Wilkinson, J.H. (1971): Practical problems arising in the solution of polynomial equations. J. Inst. Math. Appl.8, 16–35.MathSciNetzbMATHCrossRefGoogle Scholar
  31. Powell, M.J.D. (1975): Some global convergence properties of a variable metric algorithm for minimization without exact line searches. In: Proc. AMS Symposium on Nonlinear Programming 1975 . Amer. Math. Soc.Google Scholar
  32. Spellucci, P. (1993): Numerische Verfahren der nichtlinearen Optimierung. Basel: Birkhäuser.zbMATHCrossRefGoogle Scholar
  33. Stoer, J. (1975): On the convergence rate of imperfect minimization algorithms in Broyden’s ß-class. Math. Programming,9 313–335.MathSciNetzbMATHCrossRefGoogle Scholar
  34. Stoer, J. (1977): On the relation between quadratic termination and convergence properties of minimization algorithms. Part I. Theory. Numer. Math.28, 343–366.MathSciNetzbMATHCrossRefGoogle Scholar
  35. Tornheim, L. (1964): Convergence of multipoint methods. J. Assoc. Comput. Mach.11, 210–220.MathSciNetzbMATHCrossRefGoogle Scholar
  36. Traub, J.F. (1964): Iterative Methods for the Solution of Equations. Englewood Cliffs, NJ: Prentice-Hall.zbMATHGoogle Scholar
  37. Wilkinson, J.H. (1959): The evaluation of the zeros of ill-conditioned polynomials. Part I. Numer. Math.1, 150–180.MathSciNetCrossRefGoogle Scholar
  38. Wilkinson, J.H. (1969): Rundungsfehler. Heidelberger Taschenbücher, Bd. 44, Berlin-Heidelberg-New York: Springer.zbMATHCrossRefGoogle Scholar
  39. Wilkinson, J.H. (1965): The Algebraic Eigenvalue Problem. Oxford: Clarendon Press.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Josef Stoer
    • 1
  1. 1.Institut für Angewandte Mathematik und StatistikUniversität WürzburgWürzburgDeutschland

Personalised recommendations