Advertisement

Lineare Gleichungssysteme

  • Josef Stoer
Part of the Springer-Lehrbuch book series (SLB)

Zusammenfassung

In diesem Abschnitt werden direkte Methoden zur Lösung von linearen Gleichungssystemen Open image in new window dargestellt. Hier ist A eine gegebene n × n-Matrix, b ∈ ℝ n ein gegebener Vektor. Wir nehmen zusätzlich an, daß A und b reell sind, obwohl diese Einschränkung bei den meisten Verfahren unwesentlich ist. Im Gegensatz zu den iterativen Methoden (Kapitel 8), liefern die hier besprochenen direkten Verfahren die Lösung in endlich vielen Schritten, rundungsfehlerfreie Rechnung vorausgesetzt.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur zu Kapitel 4

  1. Barker, V.A. (Ed.) (1977): Sparse matrix techniques. Lecture Notes in Mathematics 572. Berlin-Heidelberg-New York: Springer.zbMATHGoogle Scholar
  2. Bartels, R.H. (1971): A stabilization of the simplex method. Numer. Math. 16, 414–434.MathSciNetzbMATHCrossRefGoogle Scholar
  3. Bauer, F.L. (1966): Genauigkeitsfragen bei der Lösung linearer Gleichungssysteme. ZAMM 46, 409–421.zbMATHCrossRefGoogle Scholar
  4. Bixby, R.E. (1990): Implementing the simplex method: The initial basis. Techn. Rep. TR 90–32, Department of Mathematical Sciences, Rice University, Houston, Texas.Google Scholar
  5. Björck, A. (1990): Least squares methods. In: Ciarlet, Lions, Eds. (1990), 465–647.Google Scholar
  6. Businger, P., Golub, G.H. (1965): Linear least squares solutions by Householder transformations. Numer. Math. 7, 269–276.MathSciNetzbMATHCrossRefGoogle Scholar
  7. Ciariet, P.G., Lions, J.L. (Ed.) (1990): Handbook of numerical analysis, Vol. 1. Finite difference methods (Part 1), Solution of equations in ℝ (Part 1). Amsterdam: North Holland.Google Scholar
  8. Collatz, L. (1968): Funktionalanalysis und numerische Mathematik. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Bd. 120. Berlin-Heidelberg-New York: Springer.Google Scholar
  9. Daniel, J.W., Gragg, W.B., Kaufmann, L., Stewart, G.W. (1976): Reorthogonali-zation and stable algorithms for updating the Gram-Schmidt QR factorization. Math. Comp. 30, 772–795.MathSciNetzbMATHGoogle Scholar
  10. Dantzig, G.B. (1963): Linear programming and extensions. Princeton, N.J.: Princeton University Press.zbMATHGoogle Scholar
  11. Dongarra, J.J., Bunch, J.R., Moler, C.B., Stewart, G.W. (1979): LINPACK users guide. Philadelphia: SIAM Publications.CrossRefGoogle Scholar
  12. Duff, I.S., Erisman, A.M., Reid, J.K (1986): Direct methods for sparse matrices. Oxford: Oxford University Press.zbMATHGoogle Scholar
  13. Duff, I.S., Reid, J.K. (1982): MA27: A set of FORTRAN subroutines for solving sparse symmetric sets of linear equations. Techn. Rep. AERE R 10533, Harwell, U.K.Google Scholar
  14. Eisenstat, S.C., Gursky, M.C., Schultz, M.H., Sherman, A.H. (1982): The Yale sparse matrix package. I. The symmetric codes. Internat. J. Numer. Methods Engrg. 18, 1145–1151.zbMATHCrossRefGoogle Scholar
  15. Forsythe, G.E., Moler, C.B. (1967): Computer solution of linear algebraic systems. Series in automatic computation. Englewood Cliffs, N.J.: Prentice-Hall.Google Scholar
  16. Gass, S.T. (1969): Linear programming. 3d edition. New York: McGraw-Hill.Google Scholar
  17. George, J. A., Liu, J.W. (1981): Computer solution of large sparse positive definite systems. Englewood Cliffs, N.J.: Prentice-Hall.zbMATHGoogle Scholar
  18. George, J. A., Liu, J.W. (1989): The evolution of the minimum degree ordering algorithm. SIAM Review 31, 1–19.MathSciNetzbMATHCrossRefGoogle Scholar
  19. George, J. A., Liu, J.W., Ng, E.G. (1980): Users guide for SPARSEPACK: Waterloo sparse linear equations package. Tech. Rep. CS-78–30, Dept. of Computer Science, University of Waterloo, Waterloo.Google Scholar
  20. Gill, P.E., Golub, G.H., Murray, W., Saunders, M.A. (1974): Methods for modifying matrix factorizations. Math. Comp. 28, 505–535.MathSciNetzbMATHCrossRefGoogle Scholar
  21. Golub, G.H., van Loan, C.F. (1983): Matrix computations. Baltimore: The John Hopkins University Press.zbMATHGoogle Scholar
  22. Grossmann, W. (1969): Grundzüge der Ausgleichsrechnung. 3. Aufl. Berlin-Heidelberg-New York: Springer.CrossRefGoogle Scholar
  23. Guest, P.G. (1961): Numerical methods of curve fitting. Cambridge: University Press.zbMATHGoogle Scholar
  24. Hadley, G. (1962): Linear programming. Reading, MA: Addison-Wesley.zbMATHGoogle Scholar
  25. Householder, A.S. (1964): The theory of matrices in numerical analysis. New York: Blaisdell.zbMATHGoogle Scholar
  26. Lawson, C.L., Hanson, H.J. (1974): Solving least squares problems. Englewood Cliffs, N.J.: Prentice-Hall.zbMATHGoogle Scholar
  27. Murty, K.G. (1976): Linear and combinatorial programming. New York: Wiley.zbMATHGoogle Scholar
  28. Prager, W., Oettli, W. (1964): Compatibility of approximate solution of linear equations with given error bounds for coefficients and right hand sides. Num. Math. 6, 405–409.MathSciNetzbMATHCrossRefGoogle Scholar
  29. Reid, J.K. (Ed) (1971): Large sparse sets of linear equations. London, New York: Academic Press.zbMATHGoogle Scholar
  30. Rose, D.J. (1972): A graph-theoretic study of the numerical solution of sparse positive definite systems of linear equations, pp. 183–217. In: Graph theory and computing, R.C. Read, ed., New York: Academic Press.Google Scholar
  31. Rose, D. J. Willoughby, R. A. (Eds.) (1972): Sparse matrices and their applications. New York: Plenum Press.Google Scholar
  32. Sautter, W. (1971): Dissertation TU München.Google Scholar
  33. Schrijver, A. (1986): Theory of linear and integer programming. Wiley, Chichester.zbMATHGoogle Scholar
  34. Schwarz, H.R., Rutishauser, H., Stiefel, E. (1968).: Numerik symmetrischer Matrizen. Leitfäden der angewandten Mathematik, Bd. 11. Stuttgart: Teubner.zbMATHGoogle Scholar
  35. Seber, G.A.F. (1977): Linear regression analysis. New York: Wiley.zbMATHGoogle Scholar
  36. Stewart, G.W. (1973): Introduction to matrix computations. New York: Academic Press.zbMATHGoogle Scholar
  37. Tewarson, R.P. (1973): Sparse matrices. New York: Academic Press.zbMATHGoogle Scholar
  38. Wilkinson, J.H. (1965): The algebraic eigenvalue problem. Monographs on Numerical Analysis, Oxford: Clarendon Press.zbMATHGoogle Scholar
  39. Wilkinson, J.H., Reinsch, Ch. (1971): Linear algebra. Handbook for Automatic Computation, Vol. II. Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Bd. 186. Berlin-Heidelberg-New York: Springer.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Josef Stoer
    • 1
  1. 1.Institut für Angewandte Mathematik und StatistikUniversität WürzburgWürzburgDeutschland

Personalised recommendations