Advertisement

Interpolation

  • Josef Stoer
Part of the Springer-Lehrbuch book series (SLB)

Zusammenfassung

Gegeben sei eine Funktion einer Variablen x
$$\Phi (x;{a_0},...,{a_n})$$
die von n + 1 weiteren reellen oder komplexen Parametern a 0, ..., a n abhängt. Ein Interpolationsproblem für Φ liegt dann vor, wenn die Parameter a i so bestimmt werden sollen, daß für n + 1 gegebene Paare von reellen oder komplexen Zahlen (x i, fi)),i= 0, ..., n, mit x ix k für i ≤ k gilt
$$\Phi ({x_i};{a_0},...,{a_n}) = {f_i},\quad i = 0,...,n$$

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur zu Kapitel 2

  1. Achieser, N. I. (1953): Vorlesungen über Approximationstheorie. Berlin: Akademie-Verlag.zbMATHGoogle Scholar
  2. Ahlberg, J., Nilson, E., Walsh, J. (1967): The theory of splines and their applications. New York: Academic Press.zbMATHGoogle Scholar
  3. Bloomfield, P. (1976): Fourier analysis of time series. New York: Wiley.zbMATHGoogle Scholar
  4. Böhmer, E. O. (1974): Spline-Funktionen. Stuttgart: Teubner.Google Scholar
  5. Brigham, E. O. (1974): The fast Fourier transform. Englewood Cliffs, N.J.: Prentice-Hall.zbMATHGoogle Scholar
  6. Bulirsch, R., Rutishauser, H. (1968): Interpolation und genäherte Quadratur. In: Sauer, Szabó.Google Scholar
  7. Bulirsch, R., Stoer, J. (1968): Darstellung von Funktionen in Rechenautomaten. In: Sauer, Szabó.Google Scholar
  8. Ciarlet, P. G., Schultz, M. H., Varga, R. S. (1967): Numerical methods of high-order accuracy for nonlinear boundary value problems I. One dimensional problems. Numer. Math. 9, 294–430.MathSciNetCrossRefGoogle Scholar
  9. Cooley, J. W., Tukey, J. W. (1965): An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19, 297–301.MathSciNetzbMATHCrossRefGoogle Scholar
  10. Curry, H. B., Schoenberg, I. J. (1966): On Polya frequency functions, IV: The fundamental spline functions and their limits. J. d’Analyse Math. 17, 73–82.MathSciNetCrossRefGoogle Scholar
  11. Davis, P. J. (1965): Interpolation and approximation. 2. Auflage. New York: Blais-dell.Google Scholar
  12. de Boor, C. (1972): On calculating with B-splines. J. Approximation Theory 6, 50–62.MathSciNetzbMATHCrossRefGoogle Scholar
  13. de Boor, C. (1978): A practical guide to splines. Berlin-Heidelberg-New York: Springer.zbMATHCrossRefGoogle Scholar
  14. de Boor, C, Pinkus, A. (1977): Backward error analysis for totally positive linear systems. Numer. Math. 27, 485–490.zbMATHCrossRefGoogle Scholar
  15. Gautschi, W. (1972): Attenuation factors in practical Fourier analysis. Numer. Math. 18, 373–400.MathSciNetzbMATHCrossRefGoogle Scholar
  16. Gentleman, W. M., Sande, G. (1966): Fast Fourier transforms — For fun and profit. In: Proc. AFIPS 1966 Fall Joint Computer Conference, 29, 503–578. Washington, D.C.: Spartan Books.Google Scholar
  17. Goertzel, G. (1958): An algorithm for the evaluation of finite trigonometric series. Amer. Math. Monthly 65, 34–35.MathSciNetzbMATHCrossRefGoogle Scholar
  18. Greville, T. N. E. (1969): Introduction to spline functions. In: Theory and Applications of Spline Functions. Edited by T. N. E. Greville. New York: Academic Press.Google Scholar
  19. Hall, C. A., Meyer, W. W. (1976): Optimal error bounds for cubic spine interpolation. J. Approximation Theory 16, 105–122.MathSciNetzbMATHCrossRefGoogle Scholar
  20. Herriot, J. G., Reinsch, C. (1971): ALGOL 60 procedures for the calculation of interpolating natural spline functions. Technical Report STAN-CS-71–200, Computer Science Department, Stanford University, CA.Google Scholar
  21. Karlin, S. (1968): Total positivity, Vol. 1. Stanford: Stanford University Press.zbMATHGoogle Scholar
  22. Kuntzmann, J. (1959): Méthodes numeriques, interpolation — dérivées. Paris: Dunod.zbMATHGoogle Scholar
  23. Maehly, H., Witzgall, Ch. (1960): Tschebyscheff-Approximationen in kleinen Intervallen II. Numer. Math. 2, 293–307.MathSciNetCrossRefGoogle Scholar
  24. Milne, E. W. (1950): Numerical calculus. 2. Auflage. Princeton, N.J.: Princeton University Press.Google Scholar
  25. Milne-Thomson, L. M. (1951): The calculus of finite differences. . Neuauflage. London: Macmillan.Google Scholar
  26. Reinsch, C: Unpublished manuscript.Google Scholar
  27. Sauer, R., Szabó, I. (Eds.) (1968): Mathematische Hilfsmittel des Ingenieurs, Part III. Berlin-Heidelberg-New York: Springer.zbMATHGoogle Scholar
  28. Schoenberg, I. J., Whitney, A. (1953): On Polya frequency functions, III: The positivity of translation determinants with an application to the interpolation problem by spline curves. Trans. Amer. Math. Soc. 74, 246–259.MathSciNetzbMATHGoogle Scholar
  29. Schultz, M. H. (1973): Spline analysis. Englewood Cliffs, N.J.: Prentice-Hall.zbMATHGoogle Scholar
  30. Singleton, R. C. (1967): On computing the fast Fourier transform. Comm. ACM 10, 647–654.MathSciNetzbMATHCrossRefGoogle Scholar
  31. Singleton, R. C. (1968): Algorithm 338: ALGOL procedures for the fast Fourier transform. Algorithm 339: An ALGOL procedure for the fast Fourier transform with arbitrary factors. Comm. ACM 11, 773–779.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Josef Stoer
    • 1
  1. 1.Institut für Angewandte Mathematik und StatistikUniversität WürzburgWürzburgDeutschland

Personalised recommendations