Skip to main content

The Regulation of Gene Expression in Bone by Mechanical Loading

  • Conference paper

Part of the book series: Ernst Schering Research Foundation Workshop ((SCHERING FOUND,volume 25))

Abstract

In the search for therapies to increase bone mass, it is not surprising that much attention has focused on studies of the effects of mechanical loading on the skeleton. Historical comments on the stronger skeletons of individuals with active lifestyles are attributed to Galileo, but serious studies of the relationships between bone mass and loading were not made until the late 1800s, when Culmann, von Meyer, Roux and Wolff initiated what has now become the idea of functional adaptation in the skeleton. Since then, studies have been predominantly phenomenological, cataloguing the changes in bone mass in response to exercise, disuse and applied loading. That is not to say that the data have not had important applications. For example, studies which have determined the numbers, rates and magnitudes of loads which influence bone mass have been useful in order to develop appropriate exercise regimens for improvement of bone mass. In addition it has become clear from clinical studies that exercise which fails to increase bone mass may still reduce the risk of fractures in osteoporotic individuals. This is because the increased muscle power and coordination which accompany increased fitness reduce the risk of falling, and therefore incidence of fracture.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bassey EJ, Ramsdale SJ (1994) Increase in femoral bone density in young women following high-impact exercise. Osteoporosis Int 4: 72–75

    Article  CAS  Google Scholar 

  • Bassey EJ, Ramsdale SJ (1995) Weight-bearing exercise and ground reaction forces — a 12-month randomized controlled trial of effects on bone-mineral density in healthy postmenopausal women. Bone 16: 469–476

    CAS  PubMed  Google Scholar 

  • Bentonila V, Hillam RA, Skerry TM, Boyd TM, Fyhrie D, Schaffler MB (1997) Activation of intracortical remodeling in adult rat long bones by fatigue loading. Trans Orthop Res Soc 22: 578

    Google Scholar 

  • Dodds RA, Ali NN, Pead MJ, Lanyon LE (1993) Early loading-related changes in the activity of glucose 6-phosphate dehydrogenase and alkaline phosphatase in osteocytes and periosteal osteoblasts in rat fibulae in vivo. J Bone Miner Res 8: 261–267

    Article  CAS  PubMed  Google Scholar 

  • Dolce C, Kinniburgh AJ, Dziak R (1996) Immediate early-gene induction in rat osteoblastic cells after mechanical deformation Arch Oral Biol 41: 1101–1108

    CAS  Google Scholar 

  • Doty SB (1981) Morphological evidence of gap junctions between bone cells. Calcif Tiss Int 33: 509–512

    Article  CAS  Google Scholar 

  • Duncan RL, Turner CH (1995) Mechanotransduction and the functional-re sponse of bone to mechanical strain. Calcif Tiss Int 57: 344–358

    Article  CAS  Google Scholar 

  • Gomperts SN (1996) Clustering membrane proteins: Its all coming together with the PSD-95/SAP90 protein family. Cell 84: 659–662

    Article  CAS  PubMed  Google Scholar 

  • Hert J, Skelenska A,Liskova M (1971) Continuous and intermittent loading of the tibia in rabbit. Folia Morphol 19: 378–387

    CAS  Google Scholar 

  • Hillam RA, Mosley JM, Skerry TM (1994) Regional differences in bone strain. Bone Miner 25: S1–32 (Abstract)

    Article  Google Scholar 

  • Hillam RA, Skerry TM (1995) Inhibition of bone resorption and stimulation of formation by mechanical loading of the modeling rat ulna in vivo. J Bone Miner Res 10: 683–689

    Article  CAS  PubMed  Google Scholar 

  • Hollmann M, Heinemann S (1994) Cloned glutamate receptors. Ann Rev Neurosci 17: 31–108

    Article  CAS  PubMed  Google Scholar 

  • Hylander WL, Johnson KR, Crompton AW (1987) Loading patterns and jaw movements during mastication in macaca-fascicularis — a bone-strain, electromyographic, and cineradiographic analysis. Am J Phys Anthropol 72: 287–314

    Article  CAS  PubMed  Google Scholar 

  • Hylander WL, Johnson KR (1997) In vivo bone strain patterns in the zygomatic arch of macaques and the significance of these patterns for functional interpretations of craniofacial form. Am J Phys Anthropol 102: 203–232

    Article  CAS  PubMed  Google Scholar 

  • Jones DB, Leivseth G,Tenbosch J (1995) Mechano-reception in osteoblast-like cells. Biochem Cell Biol 73: 525–534

    Article  CAS  Google Scholar 

  • Jones SJ, Gray C, Sakamaki H, Arora M, Boyde A, Gourdie R, Green C (1993) The incidence and size of gap-junctions between the bone-cells in rat cal-varia. Anat Embryol 187: 343–352

    Article  CAS  PubMed  Google Scholar 

  • Keila S, Pitaru S, Grosskopf A, Weinreb M (1994) Bone-marrow from mechanically unloaded rat bones expresses reduced osteogenic capacity in-vitro J Bone Miner Res 9: 321–327

    CAS  Google Scholar 

  • Lean JM, Jagger CJ, Chambers TJ, Chow JWM (1995) Increased insulin-like growth factor I mRNA expression in rat osteocytes in response to mechanical stimulation. Endocrinol Metab 268: 318–327

    Google Scholar 

  • Liang P, Pardee AB ( 1992 Differential display of eukaryotic messenger-RNA by means of the polymerase chain-reaction. Science 257: 967–971

    Article  CAS  PubMed  Google Scholar 

  • Mason DJ, Hillam RA, Skerry TM (1996) Constitutive in vivo mRNA expression by osteocytes of (3-actin, osteocalcin, connexin-43, IGF I, c-fos and cjun, but not TNFa or tartrate resistant acid phosphatase. J Bone Miner Res 11: 3 350–357

    Article  CAS  PubMed  Google Scholar 

  • Mason DJ, Suva LJ, Genever PG, Patton AJ, Stueckle S, Hillam RA, Skerry TM (1997) Mechanically regulated expression of a neural glutamate transporter in bone. A role for excitatory amino acids as osteotropic agents? Bone 20: 199–205

    Article  CAS  PubMed  Google Scholar 

  • Mosley JM (1996) The influence of mechanical load and oestrogen on the de- velopment of long bone architecture. PhD thesis, University of London

    Google Scholar 

  • Mullender MG, Huiskes R (1997) Osteocytes and bone lining cells: which are the best candidates for mechano-sensors in cancellous bone? Bone 20: 527–532

    Article  CAS  PubMed  Google Scholar 

  • O’Connor JA, Lanyon LE, McFie HF (1982) The influence of strain rate on adaptive bone remodeling. J Biomech 15: 767–781

    Article  PubMed  Google Scholar 

  • Pead MJ, Skerry TM, Lanyon LE (1988) Direct transformation from quiescence to bone formation in the adult periosteum following a single brief period of bone loading. J Bone Miner Res 3: 647–656

    Article  CAS  PubMed  Google Scholar 

  • Pitsillides AA, Rawlinson SCF, Suswillo RFL, Bourrin S, Zaman G. Lanyon LE (1995) Mechanical strain-induced no production by bone-cells — a possible role in adaptive bone (re)modeling. FASEB J 9: 1614–1622

    CAS  Google Scholar 

  • Rawlinson SCF, El Haj AJ, Minter SL, Tavares IA, Bennett A, Lanyon LE (1991) Loading-related increases in prostaglandin production in cores of adult canine cancellous bone in vitro: a role for prostacyclin in adaptive bone remodeling? J Bone Miner Res 6: 1345–1351

    Article  CAS  PubMed  Google Scholar 

  • Rawlinson SCF, Mohan S, Baylink DJ, Lanyon LE ( 1993 Exogenous prostacyclin, but not prostaglandin E2, produces similar responses in both G6PD activity and RNA production as mechanical loading, and increases IGF-II release, in adult cancellous bone in culture. Calcif Tiss Int 53: 324–329

    Article  CAS  Google Scholar 

  • Rubin CT, Lanyon LE (1987) Osteoregulatory nature of mechanical stimuli: function as a determinant for adaptive remodeling in bone. J.Orthop.Res 5: 300–310

    Article  CAS  PubMed  Google Scholar 

  • Rubin CT, McLeod KJ (1994) Promotion of bony ingrowth by frequency-specific, low-amplitude mechanical strain. Clin Orthop Rel Res 298: 165–174

    Google Scholar 

  • Rubin CT, Lanyon LE (1984) Dynamic strain similarity in vertebrates; an alternative to allometric limb bone scaling. J Theor Biol 107: 321–327

    Article  CAS  PubMed  Google Scholar 

  • Sheng M, Kim E (1996) Ion-channel associated proteins. Curr Opin Neurobiol 6: 602–608

    Article  CAS  PubMed  Google Scholar 

  • Skerry TM, Bitensky L, Chayen J, Lanyon LE (1989) Early strain-related changes in enzyme activity in osteocytes following bone loading in vivo. J Bone Miner Res 4: 783–788

    Article  CAS  PubMed  Google Scholar 

  • Skerry TM, Genever PG, Patton AJ, Grabowski PS, Stueckle S, Suva LJ (1996) Glutamate receptors in bone-cells suggest a paracrine role for excitatory amino-acids in regulation of the skeleton. J Bone Miner Res 11: 202

    Google Scholar 

  • Skerry TM (1997) Mechanical loading and bone: What sort of exercise is beneficial to the skeleton? Bone 20: 179–181

    Article  CAS  PubMed  Google Scholar 

  • Skerry TM, Peet NM (1997) “‘Unloading” exercise increases bone formation in rats. J Bone Miner Res 12:6

    Google Scholar 

  • Smith EL, Gilligan C (1991) Physical-activity effects on bone metabolism. Calcif Tiss Int 49: S50 - S54

    Article  Google Scholar 

  • Smith EL, Raab DM (1986) Osteoporosis and physical activity. Acta Med Scand Suppl 711: 149–156

    CAS  PubMed  Google Scholar 

  • Storck T, Schulte S, Hoffman K, Stoffel W (1992) Structure, expression and functional analysis of a Na+ dependent glutamate/aspartate transporter from rat brain. Proc Natl Acad Sci USA. 89: 10955–10959

    Article  CAS  PubMed  Google Scholar 

  • Thomas GP, ElHaj AJ (1996) Bone-marrow stromal cells are load responsive in-vitro. Calcif Tiss Int 58: 101–108

    Article  CAS  Google Scholar 

  • Torrance AG, Mosley JM, Suswillo RFL, Lanyon LE (1994) Noninvasive loading of the rat ulna in vivo induces a strain related modeling response uncomplicated by trauma of periosteal pressure. Calcif Tiss Int 54: 241–247

    Article  CAS  Google Scholar 

  • Turner CH, Owan I, Takano Y (1995a) Mechanotransduction in bone — role of strain-rate Endocrinol Metab 32: E438 - E442

    Google Scholar 

  • Turner CH, Takano Y, Owan I (1995b) Aging changes mechanical loading thresholds for bone-formation in rats. J Bone Miner Res 10: 1544–1549

    Article  CAS  PubMed  Google Scholar 

  • Vaes G (1988) Cellular biology and biochemical mechanism of bone resorption. A review of recent developments on the formation, activation, and mode of action of osteoclasts. Clin Orthop 231: 239–271

    CAS  PubMed  Google Scholar 

  • Wozasek GE, Simon P, Redl H, Schlag G (1994) Intramedullary pressure changes and fat intravasation during intramedullary nailing — an experimental-study in sheep. J Trauma 36: 202–207

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Skerry, T.M. (1998). The Regulation of Gene Expression in Bone by Mechanical Loading. In: Russell, R.G.G., Skerry, T.M., Kollenkirchen, U. (eds) Novel Approaches to Treatment of Osteoporosis. Ernst Schering Research Foundation Workshop, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09007-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09007-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-09009-1

  • Online ISBN: 978-3-662-09007-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics