Skip to main content

The Regulation of Bone Cell Differentiation and Proliferation by Transcription Factors

  • Conference paper
  • 61 Accesses

Part of the book series: Ernst Schering Research Foundation Workshop ((SCHERING FOUND,volume 25))

Abstract

One of the basic challenges in bone biology is to identify and understand the mechanisms by which specific molecules regulate cell proliferation, differentiation and cell-cell interactions between bone-forming osteoblasts and bone-resorbing osteoclasts which occur throughout life during normal modeling and remodeling. In recent years, many molecules have been identified which, through very different mechanisms of action, control the balance between formation and resorption. These include for example, cytokines, signaling molecules, receptors, systemic hormones and transcription factors, and these have been roughly mapped to the putative sites of action (Fig. 1). Indeed, each of these molecules are important since alterations in the expression of many of them form the basis of developmental bone defects, metabolic bone disease and skeletal neoplasias. It can be reasoned that the large number of factors which have been identified to date make it unlikely that a single mechanism alone will explain the molecular basis of bone remodeling. Rather, the intricate control of bone remodeling will likely be due to a combination of factors, some of which share target cells and pathways and others which interact indirectly. Thus, while the large number of factors increase the complexity of this system, they also serve to expand the number of potential targets for intervention.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angel P, Karin M (1991) The role of Jun, Fos and the AP-1 complex in cell- proliferation and transformation. Biochim Biophys Acta 1072: 129 - 157

    PubMed  CAS  Google Scholar 

  • Balsabore A, Jolicoeur P (1995) Fos proteins can act as negative regulators of cell growth independently of the fos transforming pathway. Oncogene 11: 455 - 465

    Google Scholar 

  • Brüsselbach S, Möhle-Steinlein U, Wang Z-Q, Schreiber M, Lucibello FC, Müller R, Wagner EF (1995) Cell proliferation and cell cycle progression are not impaired in fibroblasts and ES cells lacking c-Fos. Oncogene 10: 79 - 86

    PubMed  Google Scholar 

  • Elledge SJ, Winston J, Harper JW (1996) A question of balance - the role of cyclin-kinase inhibitors in development and tumorigenesis. Trends Cell Biol 6: 388 - 392

    Article  PubMed  CAS  Google Scholar 

  • Gossen M, Freundlieb S, Bender G, Muller G, Hillen W, Bujard H (1995) Transcriptional activation by tetracyclines in mammalian cells. Science 268: 1766 - 1769

    Article  PubMed  CAS  Google Scholar 

  • Grigoriadis AE, Schellander K, Wang Z-Q, Wagner EF (1993) Osteoblasts are target cells for transformation in c-fos transgenic mice. J Cell Biol 122: 685 - 701

    Article  PubMed  CAS  Google Scholar 

  • Grigoriadis AE, Wang Z-Q, Cecchini MG, Hofstetter W, Felix R, Fleisch HA, Wagner EF (1994) c-Fos is a key regulator of osteoclast/macrophage lineage determination and bone remodeling. Science 266: 443 - 448

    Google Scholar 

  • Grigoriadis AE, Wang Z-Q, Wagner EF (1995) Fos and bone cell development: lessons from a nuclear oncogene. Trends Genet 11: 436 - 441

    Google Scholar 

  • Harper JW, Elledge SJ (1996) CDK inhibitors in development and cancer. Curr Opin Genet Devel 6: 56 - 64

    Article  CAS  Google Scholar 

  • Hoyland J, Sharpe PT (1994) Up-regulation of c-Fos protooncogene expression in pagetic osteoclasts. J Bone Mineral Res 9: 1191 - 1194

    Article  CAS  Google Scholar 

  • Hunter T, Pines J (1994) Cyclins and cancer. Il. Cyclin-D and CDK inhibitors come of age. Cell 79: 573-582

    Google Scholar 

  • Kobayashi K, Phuchareon J, Inada K, Tomita Y, Koizumi T, Hatano M, Miyatake S, Tokuhisa T (1997) Overexpression of c-fos inhibits down-regulation of a cyclin-dependent kinase-2 inhibitor p27(Kipl) in splenic B cells activated by surface Ig cross-linking. J Immunol 158: 2050 - 2056

    PubMed  CAS  Google Scholar 

  • Lang Z, Feingold JM (1996) An autonomously replicating eukaryotic expres- sion vector with a tetracycline-responsive promoter. Gene 168: 169 - 171

    Article  PubMed  CAS  Google Scholar 

  • Maelandsmo GM, Berner J-M, Florenes VA, Forus A, Hovig E, Fodstad O, Myklebost 0 (1995) Homozygous deletion frequency and expression levels of the CDKN2 gene in human sarcomas - relationship to amplification and messenger RNA levels of CDK4 and CCND1. Brit J Cancer 72: 393 - 398

    CAS  Google Scholar 

  • Masuda H, Miller C, Koeffler HP, Battiflora H, Cline MJ (1987) Rearrangement of the p53 gene in human osteogenic sarcomas. Proc Natl Acad Sci USA 84: 7716 - 7719

    Article  PubMed  CAS  Google Scholar 

  • Miao GG, Curran T (1994) Cell transformation by c-Fos requires an extended period of expression and is independent of the cell cycle. Mol Cell Biol 14: 4295 - 4310

    PubMed  CAS  Google Scholar 

  • Motokura T, Bloom T, Kim HG, Jüppner H, Ruderman JV, Kronenberg HM, Arnold A (1991) A novel cyclin encoded by a BCLI -linked candidate oncogene. Nature 350: 512 - 515

    Article  PubMed  CAS  Google Scholar 

  • Nigro JM, Baker SJ, Preisinger AC, Jessup JM, Hostetter R, Clearly K, Bigner SH, Davidson N, Baylin S, Devilee P, Glover T, Collins FS, Weston A, Modali R, Harris CC, Vogelstein B (1989) Mutations in the p53 gene occur in diverse human tumor types. Nature 342: 705 - 708

    Article  PubMed  CAS  Google Scholar 

  • Paech K, Webb P, Kuiper GGJM, Nilsson S, Gustafsson J-A, Kushner P, Scanlan TS (1997) Differential ligand activation of estrogen receptors ERa and ER(3 at APl sites. Science 277: 1508 - 1510

    Article  PubMed  CAS  Google Scholar 

  • Pompetti F, Rizzo P, Simon RM, Freidlin B, Mew DJ, Pass HI, Picci P, Levine AS, Carbone M (1996) Oncogene alterations in primary, recurrent and metastatic human bone tumors. J Cell Biochem 63: 37 - 50

    Article  PubMed  CAS  Google Scholar 

  • Sherr CJ, Roberts JM (1995) Inhibitors of mammalian G(1) cyclin-dependent kinases. Genes Dev 9: 1149 - 1163

    Article  PubMed  CAS  Google Scholar 

  • Smith E, Frenkel B, Schlegel R, Giordano A, Lian JB, Stein LL, Stein GS (1995) Expression of cell cycle regulatory factors in differentiating osteoblasts — postproliferative up-regulation of cyclin-B and cyclin-E. Cancer Res 55: 5019 - 5024

    PubMed  CAS  Google Scholar 

  • Sunters A, McCluskey J, Grigoriadis AE (1998) Control of cell cycle gene expression in bone development and during c-Fos-induced osteosarcoma formation. Devel Genet 22: 386 - 397

    Article  CAS  Google Scholar 

  • Wang Z-Q, Liang J, Schellander K, Wagner EF, Grigoriadis AE (1995) c-Fosinduced osteosarcoma formation in transgenic mice: Cooperativity with c-Jun and the role of endogenous c-Fos. Cancer Res 55: 6244-6251

    Google Scholar 

  • Wang Z-Q, Ovitt C, Grigoriadis AE, Möhle-Steinlein U, Rüther U, Wagner, EF (1992) Bone and haematopoietic defects in mice lacking c-fos. Nature 360: 741 - 745

    Article  PubMed  CAS  Google Scholar 

  • Weinberg RA (1995) The retinoblastoma protein and cell cycle control. Cell 81: 323 - 330

    Article  PubMed  CAS  Google Scholar 

  • Wu J-X, Carpenter PM, Gresens C, Keh R, Niman H, Morris JWS, Mercola D (1990) The proto-oncogene c-Fos is overexpressed in the majority of human osteosarcomas. Oncogene 5: 989 - 1000

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grigoriadis, A.E., Sunters, A. (1998). The Regulation of Bone Cell Differentiation and Proliferation by Transcription Factors. In: Russell, R.G.G., Skerry, T.M., Kollenkirchen, U. (eds) Novel Approaches to Treatment of Osteoporosis. Ernst Schering Research Foundation Workshop, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09007-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09007-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-09009-1

  • Online ISBN: 978-3-662-09007-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics